YOLOv8改进 添加倒置残差注意力机制iRMB

25 篇文章 77 订阅 ¥39.90 ¥99.00
博客介绍了如何在YOLOv8中添加iRMB注意力机制,iRMB结合多分支注意力模块和倒置残差连接,提升图像特征提取效果。文章详细阐述了iRMB的结构,并提供了在YOLOv8框架中的实现步骤,包括修改源代码和创建配置文件。
摘要由CSDN通过智能技术生成

一、iRMB论文

论文地址:2301.01146.pdf (arxiv.org)

二、RethinkingMobileBlock注意力结构

iRMB结构主要由两个部分组成:多分支注意力模块和倒置残差连接。多分支注意力模块用于提取图像特征,倒置残差连接用于优化模型的训练。

多分支注意力模块由多个分支组成,每个分支都有自己的注意力机制。在每个分支中,通过卷积运算和注意力机制来提取图像的不同层级的特征。具体来说,每个分支都包含一个卷积层和一个自注意力模块。卷积层用于提取低层级的图像特征,自注意力模块用于提取高层级的图像特征。

倒置残差连接用于优化模型的训练。在传统的残差连接中,通过将输入直接与输出相加来实现信息传递。而在倒置残差连接中,首先将输入通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值