YOLOv8改进 添加倒置残差注意力机制iRMB

博客介绍了如何在YOLOv8中添加iRMB注意力机制,iRMB结合多分支注意力模块和倒置残差连接,提升图像特征提取效果。文章详细阐述了iRMB的结构,并提供了在YOLOv8框架中的实现步骤,包括修改源代码和创建配置文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、iRMB论文

论文地址:2301.01146.pdf (arxiv.org)

二、RethinkingMobileBlock注意力结构

iRMB结构主要由两个部分组成:多分支注意力模块和倒置残差连接。多分支注意力模块用于提取图像特征,倒置残差连接用于优化模型的训练。

多分支注意力模块由多个分支组成,每个分支都有自己的注意力机制。在每个分支中,通过卷积运算和注意力机制来提取图像的不同层级的特征。具体来说,每个分支都包含一个卷积层和一个自注意力模块。卷积层用于提取低层级的图像特征,自注意力模块用于提取高层级的图像特征。

倒置残差连接用于优化模型的训练。在传统的残差连接中,通过将输入直接与输出相加来实现信息传递。而在倒置残差连接中,首先将输入通

### 关于iRMB的技术与应用 #### 技术背景 iRMB(Improved Residual Module Block)是对传统残差块的一种优化设计。它通过多层次的特征提取能力,增强了模型对不同尺度特征的学习效果[^1]。这种改进不仅提升了网络的表现力,还通过轻量化的设计降低了计算复杂度。 #### 实现方式 在实际实现中,iRMB被集成到深度学习框架中的特定模块里。例如,在YOLOv8的目标检测任务配置文件`yolov8_C2f_iRMB.yaml`中,该模块作为核心组件参与了模型架构定义[^2]。这表明iRMB可以无缝嵌入现代目标检测系统中,从而提高其性能表现。 #### 应用场景 由于iRMB具备高效性和灵活性的特点,它的主要应用场景集中在计算机视觉领域,尤其是涉及大规模数据集的任务上。以下是几个典型的应用方向: - **图像分类**:利用iRMB增强卷积神经网络的能力来区分复杂的类别边界。 - **目标检测**:如前述提到的YOLO系列算法,借助iRMB改善小物体识别精度以及整体推理速度。 - **语义分割**:通过对像素级标注的支持,帮助生成更精细的空间分布图谱。 下面提供一段基于PyTorch框架下的伪代码展示如何构建一个简单的iRMB单元: ```python import torch.nn as nn class IRMB(nn.Module): def __init__(self, channels): super(IRMB, self).__init__() self.conv1 = nn.Conv2d(channels, channels//4, kernel_size=1) self.bn1 = nn.BatchNorm2d(channels//4) self.relu = nn.ReLU(inplace=True) self.depthwise_conv = nn.Conv2d( channels//4, channels//4, groups=channels//4, kernel_size=3, padding=1 ) self.pointwise_conv = nn.Conv2d(channels//4, channels, kernel_size=1) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.depthwise_conv(out) out = self.pointwise_conv(out) return out + residual # Element-wise addition with input (residual connection) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值