vivado基本使用流程(详细版,一步步跟着来一定能成功)

  • 创建工程

1、

 2

3、项目名称不能有空格,目录不能含有中文路径

4、

5、

6、

 

7、 

 

8、 

9、

 

10、 

11、

12、

 

13、

14、 

 

15、

 

16、 

可以查看一下新建的文件

 二、设置IP核

1、

2、

3、 

4、

5、 

6、 

7、 可以查看到生成的ip核

8、 找到例化模板,日常使用中可以根据需要设置。这里我们直接找到老师发的源文件,里面已经例化完成

9、

 

10、

 

三、管脚约束

1、

 

 2、

 3、查看手册,可以看到对应管脚

 

 

 

4、 

5、 

 6、

四、时序约束

1、综合

2、 

 3、

4、 

5、

 

 6、

7、

 

8、

 

五、仿真

1、

2、 

3、

4、

 

5、

 6、

7、 修改完记得保存

 

8、

9、

10、

 

 11、

 六、下载到开发板并且调用ILA抓信号

1、记得连接好开发板

 

2、 

 

3、

 

4、 

5、 

6、 

7、

 

8、 

9、

 

10、

 

11、

12、

 

13、

 14、

 15、

16、开始抓取,可以看到抓取的信号

 

七、Makedebug调试

1、

 

 2、

3、

 

4、

 

5、 

6、 

7、 

8、 

9、 

10、 

11.

 

12、后续操作与ILA抓取相似,可以看到抓取的信号

Vivado软件的使用 一、 建立工程 1.1新建一个工程 或者: 1.2设置工程名字和路径。输入工程名称、选择工程存储路径,并勾选Create project subdirectory选项,为工程在制定存储路径下建立独立的文件夹设置完成后,点击Next。注意: 工程名称和存储路径中不能出现中文和空格,建议工程名称以字母、数字、下划线来组成。 1.3选择RTL Project一项,并勾选Do not specify sources at this time,勾选该选项是为了跳过在新建工程的过程中添加设计源文件。点击Next。根据使用FPGA开发平台,选择对应的FPGA目标器件. 1.4确认相关信息与设计所用的FPGA器件信息是否一致,一致请点击Finish,不一致,请返回上一步修改。 1.5得到如下的空白的Vivado工程界面,完成空白工程新建 二、 工程设计 2.1设计文件输入,如下图所示,点击Flow Navigator下的Project Manager->Add Sources或中间Sources中的对话框打开设计文件导入添加对话框。 2.2添加设计文件,然后Next 2.3如果有v/vhd文件,可以通过Add File一项添加。在这里,我们要新建文件,所以选择Create File一项。 2.4在Create Source File中输入File Name,点击OK。注:名称中不可出现中文和空格。 2.5在弹出的Define Module中的I/O Port Definition,输入设计模块所需的端口,并设置端口防线,如果端口为总线型,勾选Bus选项,并通过MSB和LSB确定总线宽度。完成后点击OK. 2.6新建的设计文件(此处为flow_led.v)即存在于Source中的Design Source中。双击打开该文件,输入相应的设计代码。 三、 添加约束 添加约束文件,有两种方法可以添加约束文件,一是利用Vivado中planning功能,二是可以直接新建XDC的约束文件,手动输入约束命令。 3.1利用IO planning 3.1.1点击Flow Navigator 中Synthesis中的Run Synthesis,先对工程进行综合。 3.1.2综合完成后,选择Open Synthesized Design,打开综合结果。 3.1.3此处应该出现如下界面,如果没有出现,在图示位置layout中选择IO planning在右下方的选项卡中切换I/O ports 一栏,并在对应的信号后,输出对应的FPGA管脚标号,并制定I/O std。(具体的FPGA约束管脚和IO电平标准,可参考对应板卡的用户手册或原理图)。 3.1.4完成后,点击上方工具栏中的保存按钮,工程提示新建XDC文件或选择工程中已有的XDC文件。在这里,我们要Create a new file,输入File name,点击OK完成约束过程。 3.1.5、此时在Source下的Constraints中会找到新建的XDC文件。 3.2建立XDC文件 3.2.1、点击Add Source ,选择第一项Add or Create Constraints一项,点击Next。 3.2.2、点击Create File ,新建一个XDC文件,输入XDC文件名,点击OK。点击Finish。 3.2.3、双击打开新建好的XDC文件,按照如下规则,输入相应的FPGA管脚约束信息和电平标准。 四、 功能仿真 4.1创建激励测试文件,在Source中右击选择Add source。在Add Source界面中选择第三项Add or Create Simulation Source,点击Next。 4.2选择Creat File,创建一个新的激励测试文件。输入激励测试文件名,点击OK,然后点击Finish。 4.3弹出module端口定义对话框,由于此处是激励文件,不需要有对外的接口,所以为空。点击OK,空白的激励测试文件就建好了。 4.4在source 下双击打开空白的激励测试文件,完成对将要仿真的module的实例化和激励代码的编写。激励文件完成后,工程目录如下图: 4.5此时,进入仿真。在左侧Flow Navigator中点击Simulation 下的Run Simulation 选项,并且选择Run Behavioral Simulaiton一项,进入仿真界面。 4.6下图为仿真界面。 4.7可以通过左侧的Scope一栏中的目录结构定位到设计者想要查看的module内部寄存器,在Objects对应的信号名称上右击选择Add To Wave Window,将信号加入波形中。 4.8可通过选择工具栏中的如下选项来进行波形的仿真时间控制,如下工具条,分别是复位波形(即清空现有波形)、运行仿真、运行特定时长的仿真、仿真时长设置、仿真时长单位、单步运行、暂停…… 4.9最终得到的仿真效果图如下。核对波形与预设的逻辑功能是否一致,仿真完成。 五、综合下载 5.1在Flow Navigator中点击Program and Debug下的Generate Bitstream选项,工程会自动完成综合、实现、Bit文件生成过程,完成之后,可点击Open Implemented Design 来查看工程实现结果。 5.2点击Flow Navigator中的Open Hardware Manager一项,进入硬件编程管理界面。 5.3在Flow Navigator中展开Hardware Manager ,点击Open New Target 5.4在弹出的Open hardware target向导中,先点击Next,进入Server选择向导。 5.5保持默认,next。 5.6选中FPGA芯片型号,点击Next。完成新建Hardware Target。 5.7此时,Hardware一栏中出现硬件平台上可编程的器件。(此处以zynq为例,如果是纯的FPGA的平台,该出只有一个器件。)在对应的FPGA器件上右击,选择Program Device 5.8选择bit文件位置,默认,直接Program。 观察实验结果,设计完成。
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 87
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值