说AI没有创造性?现在它都能创作鬼畜音乐了

人工智能不仅能够通过深度学习处理图像、声音和文字,还能自主创作鬼畜音乐,展现了其潜在的创造性。一首名为《AISheepSong》的歌曲完全由AI创作,包括作词、作曲、视觉呈现和演唱,基于维基百科词条、GoogleMagenta模型和绵羊素描RNN模型等数据集。尽管作品显得幼稚,但作为娱乐性的试验品,证明了AI在音乐创作上的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.toutiao.com/a6683443928579965448/

 

有一种说法,说人工智能是通过大数据数据集训练得到目标规则或启发的,也就是通过机器学习来完成事情,那么AI的局限性就在于只能够根据已有的数据来计算和突破,而并没有创造出一些新的东西。

说AI没有创造性?现在它都能创作鬼畜音乐了

 

人工智能没有创造性?想必很多人不服,现在已经出现了很多由人工智能自主学习并创造出来的东西,有图像,有声音,有文字,还有某些应用方式。AI的机器学习的确需要数据训练,但并不代表人工智能只能通过深度学习来实现智能,深度学习是发展很猛的方向,但也只是人工智能一个分支而已。

退一步说,现在的AI,也就是主要通过深度学习训练过的人工智能,突破性已经很大了。比如这次,人工智能出原创音乐作品了,而且听着很鬼畜。那些段子手鬼畜达人会不会慌的一批?

据悉,国外一名用户用AI创造了一首歌曲。而这首歌(或者说这个MV)叫《AI Sheep Song》,看着很软绵绵人畜无害的样子,其实听着也深得sheep的本性,颇具绵绵音,竟有鬼畜范。如果你对音乐创作没有概念,那么这里简单讲解下这个创造鬼畜音乐过程中的几个骚操作。

作词,是由人工智能负责;来源样本,维基百科词条。作曲,是由人工智能负责;通过Google magenta的模型生成了6个连续的midi文件。视觉呈现,是由人工智能负责,基于绵羊素描RNN模型生成的280幅图画。演唱,是由人工智能负责;基于模型的旋律进行演唱。而其中的乐器搭配呢,则是由各种乐器插件来完成。于是乎,这一个百分百原创的鬼畜MV出炉了。

当然,这首歌,乍一看,让人无语好幼稚,可能哼哼唧唧的曲调还让人听了腻歪受不了,这是什么鬼玩意儿,我们会这么想,但,不可否认这只是一个娱乐性的试验品,而非正儿八经严肃的制作。人工智能创造出来的这首原创音乐,也就是我们听着很鬼畜的作品,也是通过各个AI模型生成的。人工智能能创造出鬼畜原创音乐,也说明了,AI有一定的创造性。

现在的人工智能可以创作鬼畜音乐了,其实这也还只是人工智能不成熟的牛刀小试,属于万里长征的第一步,以后的人工智能会更厉害更逆天。试想一下,它会不会创造其他风格的音乐,能不能创造一些小说,创造几个段子,创造一些电影等等。一人客想,如果我们每个人不好好学习进步,不学着和AI协作,那么我们那点低质的创造性,可能还不如人工智能机器人呢。

我们不能回避被数据喂养和训练过的AI依旧有很多问题,人类社会很常见的变量或不确定,都能让训练好的人工智能毁于一旦从而“瞎眼”,不过要说它没有创造性,的确不正确。现在的人工智能,可以通过数据集来生成一些东西,它未必符合客观规律或者是正常理性的,但它一定符合逻辑规律,而这个严密的逻辑成果或结果,是以后发展的基础。

### AI技术在鬼畜视频生成中的方法和工具 #### 方法概述 AI技术在鬼畜视频生成中的应用主要依赖于深度学习模型,尤其是基于生成对抗网络(GANs)、变分自编码器(VAEs)以及扩散模型的技术。这些模型能够通过训练大量数据来捕捉特定风格的视觉特征并生成高质量的内容。例如,在2024年第一季度,随着多模态能力和AI生成视频技术的进步,视频生成领域实现了显著突破[^1]。 #### 工具介绍 目前市面上存在多种可用于鬼畜视频生成的工具和技术框架: 1. **Sora模型** OpenAI推出的Sora模型是一个重要的里程碑,它支持高分辨率、长时间连贯性的视频生成,适用于复杂的场景合成与人物动作模拟。这种能力可以被用来制作具有重复性和夸张效果的鬼畜片段。 2. **开源项目** 开源社区的发展极大地推动了AI技术的应用范围降低开发成本。许多开发者借助GitHub上的开源库如`PyTorch`或`TensorFlow`构建自己的定制化解决方案。对于初学者而言,《AI绘画》的学习资源也提供了一些入门指导,有助于理解如何操作此类复杂算法[^4]。 3. **Lib.Kalos.Art平台** Kalos艺术图书馆鼓励创作者打破传统界限尝试跨界融合设计思路。虽然其最初定位并非专门针对鬼畜文化圈层服务,但它所提供的创意启发同样适合应用于该领域探索新颖表现形式[^3]。 #### 技术实现流程 以下是利用上述提到的一些技术和工具来进行具体实践时可能涉及的关键环节: ```python import torch from diffusers import DiffusionPipeline # 加载预训练好的diffusion pipeline实例 pipeline = DiffusionPipeline.from_pretrained("model_name") def generate_ghost_video(prompt, num_frames=50): frames = [] for i in range(num_frames): frame = pipeline(prompt).images[0] frames.append(frame) return frames ``` 此代码片段展示了如何使用Python脚本调用一个预先定义好的管道对象完成一系列图像帧渲染工作从而形成连续动画序列的基础逻辑结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值