https://www.toutiao.com/a6716993354439066124/
本附录总结了本书中涉及的有关线性代数、微分和概率的基础知识。为避免赘述本书未涉及的数学背景知识,本节中的少数定义稍有简化。
A.1 线性代数
下面分别概括了向量、矩阵、运算、范数、特征向量和特征值的概念。
A.1.1 向量
本书中的向量指的是列向量。一个n维向量x的表达式可写成
其中
是向量的元素。我们将各元素均为实数的 n 维向量 x 记作
或
。
A.1.2 矩阵
一个m行n列矩阵的表达式可写成
其中
是矩阵 X 中第 i 行第j列的元素(
)。我们将各元素均为实数的 m 行 n列矩阵 X 记作
。不难发现,向量是特殊的矩阵。
A.1.3 运算
设n维向量a中的元素为
,n维向量b中的元素为
。向量a与b的点乘(内积)是一个标量:
设两个m行n列矩阵
矩阵A的转置是一个n行m列矩阵,它的每一行其实是原矩阵的每一列:
两个相同形状的矩阵的加法是将两个矩阵按元素做加法:
我们使用符号
表示两个矩阵按元素乘法的运算,即阿达马积(Hadamard product):
定义一个标量k。标量与矩阵的乘法也是按元素做乘法的运算:
其他诸如标量与矩阵按元素相加、相除等运算与上式中的相乘运算类似。矩阵按元素开根号、取对数等运算也就是对矩阵每个元素开根号、取对数等,并得到和原矩阵形状相同的矩阵。
矩阵乘法和按元素的乘法不同。设A为m行p列的矩阵,B为p行n列的矩阵。两个矩阵相乘的结果
是一个m行n列的矩阵,其中第i 行第j 列(
)的元素为
A.1.4 范数
设n维向量x中的元素为
。向量x的
范数为
例如,x的
范数是该向量元素绝对值之和:
而x的
范数是该向量元素平方和的平方根:
我们通常用 || x || 指代 || x ||2。
设X是一个m行n列矩阵。矩阵X的Frobenius范数为该矩阵元素平方和的平方根:
其中
为矩阵 X 在第 i 行第 j 列的元素。
A.1.5 特征向量和特征值
对于一个n 行n 列的矩阵A,假设有标量 λ 和非零的n维向量v使
那么 v 是矩阵 A 的一个特征向量,标量 λ 是 v 对应的特征值。
A.2 微分
我们在这里简要介绍微分的一些基本概念和演算。
B.2.1 导数和微分
假设函数
的输入和输出都是标量。函数 f 的导数
且假定该极限存在。给定
,其中x和y分别是函数 f 的自变量和因变量。以下有关导数和微分的表达式等价:
其中符号D和d/dx也叫微分运算符。常见的微分演算有DC = 0(C为常数)、
(n为常数)、
、
等。
如果函数 f 和g都可导,设C为常数,那么
如果
和
都是可导函数,依据链式法则,
A.2.2 泰勒展开
函数 f 的泰勒展开式是
其中
为函数 f 的 n 阶导数(求n次导数),n! 为 n 的阶乘。假设
是一个足够小的数,如果将上式中 x 和 a 分别替换成
和 x,可以得到
由于
足够小,上式也可以简化成
A.2.3 偏导数
设u为一个有n个自变量的函数,
,它有关第i个变量
的偏导数为
以下有关偏导数的表达式等价:
为了计算
,只需将
视为常数并求u有关xi的导数。
A.2.4 梯度
假设函数
的输入是一个n维向量
,输出是标量。函数
有关 x 的梯度是一个由n个偏导数组成的向量:
为表示简洁,我们有时用
代替
。
假设x是一个向量,常见的梯度演算包括
类似地,假设X是一个矩阵,那么
A.2.5 海森矩阵
假设函数
的输入是一个n维向量
,输出是标量。假定函数 f所有的二阶偏导数都存在,f 的海森矩阵H是一个n行n列的矩阵:
其中二阶偏导数为
A.3 概率
最后,我们简要介绍条件概率、期望和均匀分布。
A.3.1 条件概率
假设事件A和事件B的概率分别为
和
,两个事件同时发生的概率记作
或
。给定事件B,事件A的条件概率为
也就是说,
当满足
时,事件 A 和事件 B 相互独立。
A.3.2 期望
离散的随机变量X的期望(或平均值)为
A.3.3 均匀分布
假设随机变量X服从[a, b]上的均匀分布,即
。随机变量X取a和b之间任意一个数的概率相等。
小结
- 本附录总结了本书中涉及的有关线性代数、微分和概率的基础知识。
练习
求函数
的梯度。
本文摘自《动手学深度学习》
动手学深度学习
作者:阿斯顿·张(Aston Zhang), 李沐(Mu Li), [美] 扎卡里·C. 立顿(Zachary C. Lipton), [德] 亚历山大·J. 斯莫拉(Alexander J. Smola)
- 人工智能机器学习深度学习领域重磅教程图书
- 亚马逊科学家作品
- 动手学深度学习的全新模式,原理与实战紧密结合
目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。