Pascal voc2007数据集

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Julialove102123/article/details/78330752

1 VOC2007基本信息

作为标准数据集,voc-2007 是衡量图像分类识别能力的基准。
faster-rcnn,yolo -v1, yolo-v2都以此数据集为最为演示样例,因此,有必要了解一下本数据集的组成架构。

VOC数据集共包含:训练集(5011幅),测试集(4952幅),共计9963幅图,共包含20个种类。

aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor


2 各类别统计信息

20个类别中,后面数字代表数据集中对应的的正样本图像个数(非目标个数)。

- 训练集

aeroplane 238
bicycle 243
bird 330
boat 181
bottle 244
bus 186
car 713
cat 337
chair 445
cow 141
diningtable 200
dog 421
horse 287
motorbike 245
person 2008
pottedplant 245
sheep 96
sofa 229
train 261
tvmonitor 256

- 测试集

aeroplane 204
bicycle 239
bird 282
boat 172
bottle 212
bus 174
car 721
cat 322
chair 417
cow 127
diningtable 190
dog 418
horse 274
motorbike 222
person 2007
pottedplant 224
sheep 97
sofa 223
train 259
tvmonitor 229

可以看出,除了person数量较多,其他类别样本个数不算多,在如此小的数据集上,深度学习能获得较高的分类识别结果,足以说明深度学习的强大性能。

3、 VOC2007具体信息

PASCAL VOC2012作为例子。下载地址为:点击打开链接
下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件:

数据集的组成架构如下:

  • Annotations —目标真值区域
  • ImageSets —-类别标签
  • JPEGImages —–图像
  • SegmentationClass
  • SegmentationObjec

具体结构如下:
  • Annotation 
    • *.xml
  • ImageSets 
    • Action 
      • *_train.txt
      • *_trainval.txt
      • *_val.txt
    • Layout 
      • train.txt
      • trainval.txt
      • val.txt
    • Main 
      • *_train.txt
      • *_trainval.txt
      • *_val.txt
    • Segmentation 
      • train.txt
      • trainval.txt
      • val.txt
  • JPEGImages 
    • *.jpg
  • SegmentationClass 
    • *.png
  • SegmentationObject 
    • *.png
①JPEGImages
JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片。
JPEGImages 中存放原始图像,这些图像都是以“年份_编号.jpg”格式命名。图片的像素尺寸大小不一,一般为(横向图) 500*375 或(纵向图) 375*500;基本不会偏差超过100。(在之后的训练中,第一步就是将这些图片都resize到300*300或是500*500,所有原始图片不能离这个标准过远。)这些图像就是用来进行训练和测试验证的图像数据。

②Annotations

Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages文件夹中的一张图片。
xml文件的具体格式如下:(对于2007_000392.jpg)
  1. <annotation>  
  2.     <folder>VOC2012</folder>                             
  3.     <filename>2007_000392.jpg</filename>                               //文件名  
  4.     <source>                                                           //图像来源(不重要)  
  5.         <database>The VOC2007 Database</database>  
  6.         <annotation>PASCAL VOC2007</annotation>  
  7.         <image>flickr</image>  
  8.     </source>  
  9.     <size>                                               //图像尺寸(长宽以及通道数)                        
  10.         <width>500</width>  
  11.         <height>332</height>  
  12.         <depth>3</depth>  
  13.     </size>  
  14.     <segmented>1</segmented>                                   //是否用于分割(在图像物体识别中01无所谓)  
  15.     <object>                                                           //检测到的物体  
  16.         <name>horse</name>                                         //物体类别  
  17.         <pose>Right</pose>                                         //拍摄角度  
  18.         <truncated>0</truncated>                                   //是否被截断(0表示完整)  
  19.         <difficult>0</difficult>                                   //目标是否难以识别(0表示容易识别)  
  20.         <bndbox>                                                   //bounding-box(包含左下角和右上角xy坐标)  
  21.             <xmin>100</xmin>  
  22.             <ymin>96</ymin>  
  23.             <xmax>355</xmax>  
  24.             <ymax>324</ymax>  
  25.         </bndbox>  
  26.     </object>  
  27.     <object>                                                           //检测到多个物体  
  28.         <name>person</name>  
  29.         <pose>Unspecified</pose>  
  30.         <truncated>0</truncated>  
  31.         <difficult>0</difficult>  
  32.         <bndbox>  
  33.             <xmin>198</xmin>  
  34.             <ymin>58</ymin>  
  35.             <xmax>286</xmax>  
  36.             <ymax>197</ymax>  
  37.         </bndbox>  
  38.     </object>  
  39. </annotation>  
对应的图片为:
③ImageSets
ImageSets 中有四个文件夹【Action】【Layout】【Main】【Segmentation】

ImageSets存放的是每一种类型的challenge对应的图像数据。

Action下存放的是人的动作(例如running、jumping等等,这也是VOC challenge的一部分)
Layout下存放的是具有人体部位的数据(人的head、hand、feet等等,这也是VOC challenge的一部分)
Main下存放的是图像物体识别的数据,总共分为20类。
Segmentation下存放的是可用于分割的数据。

分类识别只关注【Main】,它内部存储20个分类类别标签,-1表示负样本,+1为正样本
*_train.txt 训练样本集 
*_val.txt 评估样本集 
*_trainval.txt 训练与评估样本汇总

这些txt中的内容都差不多如下:
前面的表示图像的name,后面的1代表正样本,-1代表负样本。
_train中存放的是训练使用的数据,每一个class的train数据都有5717个。
_val中存放的是验证结果使用的数据,每一个class的val数据都有5823个。
_trainval将上面两个进行了合并,每一个class有11540个。
需要保证的是train和val两者没有交集,也就是训练数据和验证数据不能有重复,在选取训练数据的时候 ,也应该是随机产生的。

### Pascal VOC 2007 数据集下载与使用说明 Pascal VOC 2007 是计算机视觉领域中的一个重要数据集,主要用于目标检测和分类任务。它包含了丰富的图像资源以及详细的标注信息,适合用于训练和评估机器学习模型。 #### 下载方式 可以通过 OpenDataLab 平台轻松获取 Pascal VOC 2007 数据集[^1]。此平台收录了大量经典、热门的数据集,并提供了便捷的搜索功能。只需访问其网站并输入关键词“Pascal VOC 2007”,即可找到对应的数据集页面进行下载。 如果需要更高效的下载体验,也可以参考其他第三方提供的镜像链接或工具。例如,在某些开源项目中会提供额外的支持服务,如通过百度网盘加速下载类似的公共数据集[^3]。 #### 文件结构与格式介绍 Pascal VOC 2007 的主要组成部分包括: - **JPEGImages**: 存储原始图片文件。 - **Annotations**: XML 格式的标注文件,记录每张图片的目标类别及边界框位置。 - **ImageSets/Main**: 列表文件定义哪些样本属于训练集(train)、验证集(val),或者两者组合而成的 trainval 集合。 这些目录共同构成了完整的数据体系,便于开发者按照标准流程加载和处理数据。 #### 使用指导 为了方便利用该数据集开展实验活动,可以借助 PyCharm 实现远程调试环境配置,具体操作涉及设置 AutoDL 训练框架并与本地 IDE 建立连接[^4]。此外还需要注意调整参数以适配特定硬件条件下的性能需求。 以下是简单的 Python 脚本示例展示如何读取部分基本信息: ```python import xml.etree.ElementTree as ET from pathlib import Path def parse_voc_annotation(ann_dir, img_ids): all_boxes = [] for img_id in img_ids: annotation_file = ann_dir / f"{img_id}.xml" tree = ET.parse(annotation_file.open()) root = tree.getroot() boxes = [] for obj in root.findall('object'): label = obj.find('name').text bbox = obj.find('bndbox') xmin = int(bbox.find('xmin').text) ymin = int(bbox.find('ymin').text) xmax = int(bbox.find('xmax').text) ymax = int(bbox.find('ymax').text) boxes.append((label, (xmin, ymin), (xmax, ymax))) all_boxes.append(boxes) return all_boxes if __name__ == "__main__": annotations_path = Path("path/to/annotations") image_set_main = Path("path/to/ImageSets/Main/train.txt") with open(image_set_main, 'r') as f: ids = [line.strip() for line in f.readlines()] parsed_data = parse_voc_annotation(annotations_path, ids[:5]) print(parsed_data) ``` 上述代码片段展示了从 `Annotations` 中解析前五个样例的具体方法。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值