感知机方法
模型
f ( x ) = s i g n ( w ⋅ x + b ) f(x) = sign(w·x +b) f(x)=sign(w⋅x+b)
策略
损失函数极小化
min
w
,
b
L
(
w
,
b
)
=
−
∑
x
i
∈
M
y
i
(
w
⋅
x
i
+
b
)
\begin{aligned} &\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w·x_i +b) \end{aligned}
w,bminL(w,b)=−xi∈M∑yi(w⋅xi+b)
- 损失函数:将损失函数定义为分类点到超平面S的距离总和
L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w,b) = -\sum_{x_i \in M} y_i(w·x_i +b) L(w,b)=−xi∈M∑yi(w⋅xi+b)
- 损失函数的梯度:
∇ w L ( w , b ) = − ∑ x i ∈ M y i x i ∇ w L ( w , b ) = − ∑ x i ∈ M y i x i \begin{aligned} &{\nabla}_wL(w,b) = - \sum_{x_i \in M}y_ix_i\\ &{\nabla}_wL(w,b) = - \sum_{x_i \in M}y_ix_i \end{aligned} ∇wL(w,b)=−xi∈M∑yixi∇wL(w,b)=−xi∈M∑yixi
- 损失函数的求解:梯度下降法求解极小化损失函数的参数w,b,从而得到分离超平面S。
算法
1、感知机学习算法的原始形式
- 算法:
输 入 : T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) ; x i ∈ X = R n , y i ∈ Y = { + 1 , − 1 } , i = 1 , 2 , … , N ; η ; 0 < η ≤ 1 输 出 : w , b , 感 知 机 模 型 : f ( x ) = s i g n ( w ⋅ x + b ) 步 骤 : 1 、 选 取 初 始 值 : w 0 , b 0 2 、 在 训 练 集 中 选 取 数 据 : ( x i , y i ) 3 、 如 果 y i ( w ⋅ x i + b ) ≤ 0 : w ← w + η y i x i b ← b + η y i 4 、 转 至 步 骤 2 , 直 至 训 练 集 中 没 有 误 分 类 点 \begin{aligned} 输入:\\ &T = {(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)};\\ &x_i \in \mathcal{X}=R^n,y_i \in \mathcal{Y} = \{+1,-1\},i=1,2,\dots,N;\\ &\eta;0<\eta\leq 1\\ 输出:\\ &w,b,感知机模型:f(x) = sign(w·x +b)\\ 步骤:\\ &1、选取初始值:w_0,b_0\\ &2、在训练集中选取数据:(x_i,y_i)\\ &3、如果y_i(w·x_i+b) \leq 0:\\ &\quad\quad \quad\quad w \leftarrow w +\eta y_i x_i\\ &\quad\quad\quad\quad b \leftarrow b +\eta y_i\\ &4、转至步骤2,直至训练集中没有误分类点 \end{aligned} 输入:输出:步骤:T=(x1,y1),(x2,y2),…,(xN,yN);xi∈X=Rn,yi∈Y={+1,−1},i=1,2,…,N;η;0<η≤1w,b,感知机模型:f(x)=sign(w⋅x+b)1、选取初始值:w0,b02、在训练集中选取数据:(xi,yi)3、如果yi(w⋅xi+b)≤0:w←w+ηyixib←b+ηyi4、转至步骤2,直至训练集中没有误分类点
- 算法解释:
当一个实例被误分类,即位于分离超平面错误的一侧,则调整w,b,使超平面向错误的一侧移动,以减少该分类点与超平面之间的距离,直到超平面超过该误分类点。
- 收敛性(Novikoff定理):
感知机算法对于线性可分数据集来说是收敛的,即通过有限次的搜索迭代,感知机算法最终会得到一个将实例完全正确分开的分离超平面。如果数据集是线性不可分的,那么感知机算法不收敛,迭代结果会发生震荡。感知机在训练数据集上的误分类次数k满足:
k
≤
(
R
γ
)
2
k \leq(\frac{R}{\gamma})^2
k≤(γR)2
2、感知机学习算法的对偶形式
- 算法:
输 入 : T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) ; x i ∈ X = R n , y i ∈ Y = { + 1 , − 1 } , i = 1 , 2 , … , N ; η ; 0 < η ≤ 1 输 出 : α , b , 感 知 机 模 型 : f ( x ) = s i g n ( ∑ i = 1 N α i y i x j ⋅ x + b ) , α = ( α 1 , α 2 , … , α N ) T 步 骤 : 1 、 选 取 初 始 值 : α ← 0 ; b ← 0 2 、 在 训 练 集 中 选 取 数 据 : ( x i , y i ) 3 、 如 果 y i ( ∑ j = 1 N α j y j x j ⋅ x i + b ) ≤ 0 : α ← α i + η b ← b + η y i 4 、 转 至 步 骤 2 , 直 至 训 练 集 中 没 有 误 分 类 点 \begin{aligned} 输入:\\ &T = {(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)};\\ &x_i \in \mathcal{X}=R^n,y_i \in \mathcal{Y} = \{+1,-1\},i=1,2,\dots,N;\\ &\eta;0<\eta\leq 1\\ 输出:\\ &\alpha,b,感知机模型:f(x) = sign(\sum_{i=1}^N \alpha_iy_ix_j·x +b),\alpha = (\alpha_1,\alpha_2,\dots,\alpha_N)^T\\ 步骤:\\ &1、选取初始值:\alpha \leftarrow 0;b \leftarrow0\\ &2、在训练集中选取数据:(x_i,y_i)\\ &3、如果y_i( \sum_{j=1}^N \alpha_jy_jx_j·x_i +b) \leq 0:\\ &\quad\quad \quad\quad \alpha \leftarrow \alpha_i+\eta\\ &\quad\quad\quad\quad b \leftarrow b +\eta y_i\\ &4、转至步骤2,直至训练集中没有误分类点 \end{aligned} 输入:输出:步骤:T=(x1,y1),(x2,y2),…,(xN,yN);xi∈X=Rn,yi∈Y={+1,−1},i=1,2,…,N;η;0<η≤1α,b,感知机模型:f(x)=sign(i=1∑Nαiyixj⋅x+b),α=(α1,α2,…,αN)T1、选取初始值:α←0;b←02、在训练集中选取数据:(xi,yi)3、如果yi(j=1∑Nαjyjxj⋅xi+b)≤0:α←αi+ηb←b+ηyi4、转至步骤2,直至训练集中没有误分类点
- 算法解释:
当一个实例被误分类,即位于分离超平面错误的一侧,则调整w,b,使超平面向错误的一侧移动,以减少该分类点与超平面之间的距离,直到超平面超过该误分类点。