TNNLS 2024 综述论文一览 Part2(10篇)(IEEE Transactions on Neural Networks and Learning Systems)

TNNLS 2024 综述论文一览 Part2(10篇)(IEEE Transactions on Neural Networks and Learning Systems)

A Critical Review of Inductive Logic Programming Techniques for Explainable AI

文章解读: 对用于可解释人工智能的归纳逻辑编程技术的批判性回顾
文章链接: (10.1109/TNNLS.2023.3246980)

在这里插入图片描述

论文《A Critical Review of Inductive Logic Programming Techniques for Explainable AI》主要探讨了归纳逻辑编程(ILP)在生成可解释性解释中的应用。ILP 是符号人工智能的一个子领域,通过其直观的逻辑驱动框架,利用归纳推理从示例和背景知识中生成可解释的一阶子句理论。尽管现代机器学习算法取得了进展,但其底层机制的不透明性仍然是采用的障碍,因此,可解释的人工智能已经出现,作为提高现代机器学习算法可解释性的回应。

Slow Down to Go Better: A Survey on Slow Feature Analysis

文章解读: 放慢脚步,才能走得更好:慢特征分析综述
文章链接: (10.1109/TNNLS.2022.3201621)

在这里插入图片描述

论文《Slow Down to Go Better: A Survey on Slow Feature Analysis》主要探讨了慢特征分析(Slow Feature Analysis, SFA)这一无监督学习算法。SFA旨在从快速变化的输入信号中提取缓慢变化的特征,这些特征可以用于多种应用,如复杂细胞感受野的自组织、空间变换不变的整体对象识别、地方细胞的自组织、驱动力提取以及非线性系统分析等。SFA通过学习瞬时非线性函数将输入信号转换为慢速变化的特征,并且在数学上可以表示为一个最优化问题。此外,SFA在分类和信号分析中也得到了广泛应用,并且近年来受到了越来越多的关注。

Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey

文章解读: 深度强化学习与进化策略:比较研究综述
文章链接: (10.1109/TNNLS.2023.3264540)

在这里插入图片描述

论文《Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey》主要比较了深度强化学习和进化策略在不同方面的优劣。深度强化学习通过与环境直接交互实现端到端的学习,适用于高维度和大规模问题,但面临探索与利用平衡的问题。进化策略则无需显式建模策略,通过向参数空间注入噪声进行优化,实现简单且具有全局搜索能力。结合两者的方法可以提升策略搜索性能,减少梯度估计误差。

Deep Learning-Based NOMA System for Enhancement of 5G Networks: A Review

文章解读: 基于深度学习的NOMA系统对5G网络的增强:综述
文章链接: (10.1109/TNNLS.2022.3200825)

在这里插入图片描述

论文《Deep Learning-Based NOMA System for Enhancement of 5G Networks: A Review》主要探讨了基于深度学习的非正交多址(NOMA)系统在5G网络中的应用和增强。该研究综述了深度学习和NOMA技术在通信系统中的广泛应用,并探索了它们在5G通信中的各种应用。NOMA技术被认为是未来无线通信技术的重要候选者,因为它能够显著提高系统吞吐量和大规模连接能力。然而,实际部署NOMA面临一些挑战,如离线设计范式和非统一信号处理方法导致的不灵活性。

Deep Neural Networks and Tabular Data: A Survey

文章解读: 深度神经网络与表格数据:综述
文章链接: (10.1109/TNNLS.2022.3229161)

在这里插入图片描述

论文《Deep Neural Networks and Tabular Data: A Survey》主要探讨了深度神经网络在表格数据上的应用和挑战。表格数据通常具有结构化形式,如CSV表格,包含行和列,其异质性(例如分类值和稀疏值)使得深度神经网络的建模变得复杂。尽管如此,近年来研究人员开发了许多针对表格数据的深度学习模型,如TabNet、SNN、AutoInt、GrowNet和MLP等,这些模型在多个数据集上表现出色。此外,研究者们还提出了将决策树平滑化以使其可微分的方法,以及利用注意力机制的模型,但这些方法在某些任务上并未超越ResNet。综上所述,尽管深度神经网络在表格数据上的应用面临挑战,但通过创新的架构和技术,其性能正在不断提升。

A Comprehensive Survey on Community Detection With Deep Learning

文章解读: 深度学习在社区检测中的应用综述
文章链接: (10.1109/TNNLS.2021.3137396)

在这里插入图片描述

论文《A Comprehensive Survey on Community Detection With Deep Learning》主要探讨了深度学习在社区检测中的应用和进展。社区检测是网络分析中的一个重要任务,其目的是识别网络中具有相似特征和联系的成员群体。传统的社区检测方法包括谱聚类和统计推断方法,但近年来,深度学习技术在处理高维网络数据方面显示出显著优势。这篇综述不仅回顾了基于深度学习的社区检测模型和算法的发展趋势,还指出了当前面临的挑战,并提出了未来的研究方向。

Measuring Disentanglement: A Review of Metrics

文章解读: 测量解纠缠:指标综述
文章链接: (10.1109/TNNLS.2022.3218982)

在这里插入图片描述

论文《Measuring Disentanglement: A Review of Metrics》主要探讨了如何量化数据中的解缠表示,即如何独立捕捉解释数据的真实潜在因素。尽管许多方法已经用于学习这些表示,但如何量化解缠仍然不清楚。该论文对现有的监督解缠度量进行了全面的调查和分析,并提出了一个新的分类法,将所有度量分为干预基础、预测基础和信息基础三类。

A Survey of Visual Transformers

文章解读: 视觉Transformer综述
文章链接: (10.1109/TNNLS.2022.3227717)

在这里插入图片描述

论文《A Survey of Visual Transformers》主要探讨了视觉Transformer(ViT)在计算机视觉领域的应用和发展。Transformer最初在自然语言处理(NLP)中取得巨大成功,随后被引入计算机视觉领域,并显示出在图像分类等任务中的潜力。尽管视觉Transformer在多个基准上接近或超过了卷积神经网络(CNN)的方法,但其技术仍不够成熟,无法完全取代CNN在计算机视觉中的主导地位。未来的研究方向包括进一步探索高级语义嵌入以弥合视觉和顺序Transformer之间的差距。

A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting

文章解读: 利用深度学习进行显微镜图像中细胞核检测与分割的综述及其在无偏体视学计数中的应用
文章链接: (10.1109/TNNLS.2022.3213407)

在这里插入图片描述

论文《A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting》主要回顾了最新的深度学习方法在细胞(核)检测和分割中的应用,特别是在癌症和阿尔茨海默病的研究中,并强调了结合无偏立体学的深度学习方法。该研究面临的挑战包括准确且可重复的细胞检测和分割,尤其是在染色显微图像中的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值