IEEE TNNLS | 脑电(EEG)自监督学习

摘要

数十年的研究表明,与传统的统计技术相比,机器学习在探索脑电图(EEG)记录中嵌入的高度非线性模式方面具有优势。然而,即使是最先进的机器学习技术也需要相对较大且标记完整的EEG存储库。EEG数据的收集和标记成本高昂。此外,由于实验范式在不同试次中存在不一致性,直接合并现有数据集以获得大规模数据量通常是不可行的。然而,自监督学习(SSL)很好地解决了这些挑战,因为它能够在不同实验范式的EEG记录中进行学习,即使这些试次探索的是不同的现象。它能够整合多个EEG存储库,以提高机器学习训练中的准确性、减少偏差和过拟合问题。此外,SSL可用于标记训练数据有限且手动标记成本高昂的情况。

前言

脑电图(EEG)是一种用于研究大脑-行为关系的非侵入性功能成像方法。EEG记录比较复杂,并且经常会受到被试运动、眨眼以及电极与头皮之间接触不良所引起的伪迹的影响。因此,传统的统计方法,如线性或多元回归分析,无法捕获EEG信号与行为之间复杂的非线性关系。脑电研究人员采用机器学习方法来探索复杂的非线性大脑-行为关系,其准确性高于传统的统计模型,尤其是在脑机接口应用方面。

机器学习技术,如深度人工神经网络,从数学/统计角度模拟了人脑学习、识别、发现、估计和解释复杂感官输入模式的能力。人们可以将机器学习模型(特别是人工神经网络)描述为输入数据(例如多通道EEG记录)的复杂多层互联函数,用于高度复杂的模式识别(例如认知状态估计)。

机器学习模型通常需要使用由人类收集和分类/标记的数据进行训练,称为“监督学习”。例如,当训练一个模型来识别成功记忆编码的神经特征时,人类会标记在呈现信息期间记录的脑电信号(例如,列表学习任务中的单词),以区分随后被记住与随后被遗忘的情况。因此,监督学习是一项机器学习任务,旨在高效地优化机器学习模型的参数,以准确地将输入数据映射到相应的输出,即机器学习训练。监督机器学习算法的一个早期示例是Adeli和Hung(1994)的自适应共轭梯度学习算法。最近开发的监督机器学习/分类算法的示例包括增强概率神经网络、神经动态分类算法、动态集成学习算法和有限元机器快速学习。在EEG研究中,由于脑电信号复杂且通常容易受到伪迹的影响,因此监督学习任务通常需要大量标记的脑电数据来准确训练机器学习模型。

然而,对于脑电实验来说,获取大量标记数据并非总是切实可行的。例如,当参与者报告的结果只能在实验期间间歇性记录,比如自我报告的疲劳或疼痛时,就不可能获得完整的EEG标记。此外,当脑电特征泛化到实验室环境之外时,也就不可能得到完全标记的数据集。例如,实验者可能希望在受控的实验室任务中建立大脑-行为关系(如检测欺骗的脑电特征),并将其应用于其他任务/环境(如在审讯过程中检测欺骗)。当通过一个任务获得的脑电特征在不同任务(该任务可能涉及不同的感知/认知处理,从理论上讲可能影响脑电反应)中作为行为生物标记时,用于建立生物标记的数据标签仅适用于第一个数据集,而该数据集仅代表每个参与者可用的更广泛且任务特异性较低的EEG的一个子集。最后,实际限制因素(如人类研究对象的成本)可能会限制标记数据的数量。例如,一个旨在检测成功记忆编码的神经特征的实验需要手动标记列表学习的脑电迹线,以判断参与者后来是否记住了这个单词。这是一项繁琐的工作,需要大量的时间成本,这实际上限制了可以收集和标记的数据量。

传统上,训练监督模型(图1)涉及随机生成参数(例如权重、核和偏差)。一种被称为“学习算法”的优化范式将迭代地调整这些参数的大小,以检索具有合适“特征表示”的完美输入-输出映射。在图1所示的深度监督模型中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值