Python实现基于Optuna超参数自动优化的LightGBM回归模型(LGBMRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

 1.项目背景

Optuna是一个开源的超参数优化(HPO)框架,用于自动执行超参数的搜索空间。 为了找到最佳的超参数集,Optuna使用贝叶斯方法。

LigthGBM算法是Boosting算法的新成员,由微软公司开发,采用损失函数的负梯度作为当前决策树的残差近似值,去拟合新的决策树。

本项目使用基于Optuna超参数自动优化的LGBMRegressor算法来解决回归问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

 数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

从上图可以看到,总共有9个字段。

关键代码:

3.2 缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

 

从上图可以看到,数据不存在缺失值,总数据量为1000条。

关键代码:

3.3 变量描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息: 

关键代码如下:

4.探索性数据分析

4.1 y变量分布直方图

通过Matpltlib工具的hist()方法绘制直方图:

从上图可以看出,y主要集中在-200到200之间。

4.2 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1 建立特征数据和标签数据

y为标签数据,除 y之外的为特征数据。关键代码如下:

 

5.2 数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:

6.构建Optuna超参数自动化的LightGBM回归模型

主要使用基于Optuna超参数自动化调优的LGBMRegressor算法,用于目标回归。

6.1 Optuna超参数自动化调优框架介绍

Optuna是一个开源的超参数优化(HPO)框架,用于自动执行超参数的搜索空间。 为了找到最佳的超参数集,Optuna使用贝叶斯方法。 它支持下面列出的各种类型的采样器:

  1. GridSampler (使用网格搜索)
  2. RandomSampler (使用随机采样)
  3. TPESampler (使用树结构的Parzen估计器算法)
  4. CmaEsSampler (使用CMA-ES算法)

一个极简的 Optuna 的优化程序中只有三个最核心的概念,目标函数(objective),单次试验(trial),和研究(study):

  1. objective 负责定义待优化函数并指定参/超参数数范围
  2. trial 对应着 objective 的单次执行
  3. study 则负责管理优化,决定优化的方式,总试验的次数、试验结果的记录等功能。

6.2 构建调优模型

 关键代码如下:

6.3 最优参数展示

最优参数结果展示:

 

关键代码如下:

7.模型评估

7.1评估指标及结果

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

从上表可以看出,R方分值为0.9352,说明模型效果较好。  

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果较好。  

7.3 超参数重要性可视化图

通过上图可以看出,超参数的重要性依次为:max_depth、learning_rate、n_estimators、subsample、random_state。

8.结论与展望

综上所述,本项目采用了基于Optuna超参数自动调优的LightGBM回归模型,最终证明了我们提出的模型效果良好。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/1478dyFu8BTbAwqPeNKI5Sw 
# 提取码:dy29


# 用Pandas工具查看数据
print(data.head())

# 数据缺失值统计
print('****************************************')
print(data.info())

print('****************************************')
print(data.describe().round(4))  # 保留4位小数点

# y变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = data['y']  # 过滤出y变量的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
plt.xlabel('y')
plt.ylabel('数量')
plt.title('y变量分布直方图')
  • 4
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,以下是利用贝叶斯优化优化LightGBM回归模型Python 代码实例: 首先,需要安装必要的库,包括 `lightgbm`、`scikit-learn`、`bayesian-optimization`: ```python !pip install lightgbm scikit-learn bayesian-optimization ``` 然后,可以使用下面的代码来进行模型优化: ```python import lightgbm as lgb from sklearn.datasets import load_boston from sklearn.metrics import mean_squared_error from bayes_opt import BayesianOptimization # 加载数据集 boston = load_boston() X, y = boston.data, boston.target # 定义 LightGBM 模型训练和评估函数 def lgb_evaluate(num_leaves, feature_fraction, bagging_fraction, max_depth, min_split_gain, min_child_weight): params = {'application':'regression','num_iterations': 1000, 'learning_rate':0.05, 'early_stopping_round':50, 'metric':'l2'} params["num_leaves"] = int(round(num_leaves)) params['feature_fraction'] = max(min(feature_fraction, 1), 0) params['bagging_fraction'] = max(min(bagging_fraction, 1), 0) params['max_depth'] = int(round(max_depth)) params['min_split_gain'] = min_split_gain params['min_child_weight'] = min_child_weight lgb_train = lgb.Dataset(X, y) cv_result = lgb.cv(params, lgb_train, nfold=5, seed=1, stratified=False, verbose_eval =None, metrics=['l2']) return -1.0 * cv_result['l2-mean'][-1] # 定义超参数搜索空间 lgbBO = BayesianOptimization(lgb_evaluate, {'num_leaves': (24, 45), 'feature_fraction': (0.1, 0.9), 'bagging_fraction': (0.8, 1), 'max_depth': (5, 8.99), 'min_split_gain': (0.001, 0.1), 'min_child_weight': (5, 50)}, random_state=1) # 进行贝叶斯优化 lgbBO.maximize(init_points=5, n_iter=25, acq='ei', xi=0.01) # 输出最佳超参数和最佳评估结果 print(lgbBO.max) ``` 在上面的代码中,首先加载了波士顿房价数据集,然后定义了一个 `lgb_evaluate` 函数来训练和评估 LightGBM 模型。 接下来,定义了一个超参数的搜索空间,并使用 `BayesianOptimization` 类来实现贝叶斯优化。在进行超参数搜索时,使用了 5 个初始点和 25 次迭代,采用 EI(Expected Improvement)作为采样策略。最后输出了最佳超参数和最佳评估结果。 注意,这里使用的是 `maximize` 函数,因为我们要最大化评估指标(L2 损失),所以需要取负号。如果要最小化指标,则不需要取负号。 希望这个例子可以帮助到你!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖哥真不错

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值