Python实现基于Optuna超参数自动优化的LightGBM回归模型(LGBMRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

 1.项目背景

Optuna是一个开源的超参数优化(HPO)框架,用于自动执行超参数的搜索空间。 为了找到最佳的超参数集,Optuna使用贝叶斯方法。

LigthGBM算法是Boosting算法的新成员,由微软公司开发,采用损失函数的负梯度作为当前决策树的残差近似值,去拟合新的决策树。

本项目使用基于Optuna超参数自动优化的LGBMRegressor算法来解决回归问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

 数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

从上图可以看到,总共有9个字段。

关键代码:

3.2 缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

 

从上图可以看到,数据不存在缺失值,总数据量为1000条。

关键代码:

3.3 变量描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息: 

关键代码如下:

4.探索性数据分析

4.1 y变量分布直方图

通过Matpltlib工具的hist()方法绘制直方图:

从上图可以看出,y主要集中在-200到200之间。

4.2 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1 建立特征数据和标签数据

y为标签数据,除 y之外的为特征数据。关键代码如下:

 

5.2 数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:

6.构建Optuna超参数自动化的LightGBM回归模型

主要使用基于Optuna超参数自动化调优的LGBMRegressor算法,用于目标回归。

6.1 Optuna超参数自动化调优框架介绍

Optuna是一个开源的超参数优化(HPO)框架,用于自动执行超参数的搜索空间。 为了找到最佳的超参数集,Optuna使用贝叶斯方法。 它支持下面列出的各种类型的采样器:

  1. GridSampler (使用网格搜索)
  2. RandomSampler (使用随机采样)
  3. TPESampler (使用树结构的Parzen估计器算法)
  4. CmaEsSampler (使用CMA-ES算法)

一个极简的 Optuna 的优化程序中只有三个最核心的概念,目标函数(objective),单次试验(trial),和研究(study):

  1. objective 负责定义待优化函数并指定参/超参数数范围
  2. trial 对应着 objective 的单次执行
  3. study 则负责管理优化,决定优化的方式,总试验的次数、试验结果的记录等功能。

6.2 构建调优模型

 关键代码如下:

6.3 最优参数展示

最优参数结果展示:

 

关键代码如下:

7.模型评估

7.1评估指标及结果

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

从上表可以看出,R方分值为0.9352,说明模型效果较好。  

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果较好。  

7.3 超参数重要性可视化图

通过上图可以看出,超参数的重要性依次为:max_depth、learning_rate、n_estimators、subsample、random_state。

8.结论与展望

综上所述,本项目采用了基于Optuna超参数自动调优的LightGBM回归模型,最终证明了我们提出的模型效果良好。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/1478dyFu8BTbAwqPeNKI5Sw 
# 提取码:dy29


# 用Pandas工具查看数据
print(data.head())

# 数据缺失值统计
print('****************************************')
print(data.info())

print('****************************************')
print(data.describe().round(4))  # 保留4位小数点

# y变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = data['y']  # 过滤出y变量的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
plt.xlabel('y')
plt.ylabel('数量')
plt.title('y变量分布直方图')
LightGBM OPTUNA是一个使用Optuna框架进行LightGBM模型的超参数优化的方法。Optuna是一个开源的超参数优化框架,使用贝叶斯方法来执行超参数的搜索空间。LightGBM是一个高效的梯度提升决策树模型,通过结合LightGBMOptuna,我们可以自动找到最佳的超参数组合来训练LightGBM模型。具体来说,我们可以定义一个优化函数,该函数将使用Optuna的create_study方法创建一个Study对象,并指定优化方向和研究名称。然后,我们可以定义一个lambda函数,该函数将使用train_model_category方法来训练LightGBM模型,并在每次迭代时记录评估指标。最后,我们可以使用Study对象的optimize方法来执行超参数优化,设置n_trials参数来指定优化的迭代次数。通过这种方式,我们可以使用Optuna快速找到一个较好甚至最优的LightGBM模型超参数组合。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [使用OPTUNA对LightBGM自动调试参数,并进行绘图可视化](https://blog.csdn.net/Geeksongs/article/details/121449130)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Python实现基于Optuna超参数自动优化LightGBM回归模型(LGBMRegressor算法)项目实战](https://blog.csdn.net/weixin_42163563/article/details/128068357)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值