Python实现离散选择概率模型(Probit算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

Probit模型是经过Logit模型的形式经过变形后得到的,Probit模型假设与标准正态分布的概率分布函数相似。

本项目通过Probit算法来构建概率模型。  

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

      

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建概率模型

主要使用Probit算法,用于目标分类。

6.1 构建模型

编号

模型名称

参数

1

Probit模型

默认参数

6.2 模型的摘要信息

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

Probit模型

准确率

0.9075

查准率

0.9077

查全率

0.9031

F1分值

0.9054

从上表可以看出,F1分值为0.9054,说明模型效果较好。

关键代码如下:   

7.2 分类报告

      

从上图可以看出,分类为0的F1分值为0.91;分类为1的F1分值为0.91。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有18个样本;实际为1预测不为1的 有19个样本,整体预测准确率良好。   

8.结论与展望

综上所述,本文采用了Probit算法来构建概率模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。   

Probit模型是一种离散选择模型,常用于分析二元选择数据,比如一个人是否购买某个产品。Probit模型假设选择行为服从正态分布,通过最大似然估计来估计模型参数。以下是一个C++带类实现离散选择模型Probit模型的示例代码: ```cpp #include <iostream> #include <cmath> #include <vector> using namespace std; class ProbitModel { private: vector<double> X; // 自变量 vector<int> Y; // 因变量 int n; // 样本数 int k; // 自变量个数 double theta; // 参数 double LL; // 对数似然函数值 public: ProbitModel(vector<double> x, vector<int> y) { X = x; Y = y; n = x.size(); k = 1; } // 似然函数 double likelihood() { double sum = 0.0; for (int i = 0; i < n; i++) { double z = X[i] * theta; sum += Y[i] * log(CDF(z)) + (1 - Y[i]) * log(1 - CDF(z)); } return sum; } // 累积分布函数 double CDF(double z) { return 0.5 * (1 + erf(z / sqrt(2))); } // 一阶导数 double firstDerivative() { double sum = 0.0; for (int i = 0; i < n; i++) { double z = X[i] * theta; sum += (Y[i] - CDF(z)) * X[i] / CDF(z) / (1 - CDF(z)); } return sum; } // 二阶导数 double secondDerivative() { double sum = 0.0; for (int i = 0; i < n; i++) { double z = X[i] * theta; sum += -X[i] * X[i] * CDF(z) * (1 - CDF(z) + z * exp(-z * z / 2)) / pow(CDF(z), 2) / pow(1 - CDF(z), 2); } return sum; } // 牛顿法求解 void fit() { double epsilon = 1e-6; // 迭代终止条件 int maxIter = 1000; // 最大迭代次数 double delta; // 梯度 double deltaTheta; // 参数更新量 int iter = 0; // 迭代次数 while (iter < maxIter) { double f1 = firstDerivative(); double f2 = secondDerivative(); delta = -f1 / f2; deltaTheta = delta; theta += deltaTheta; LL = likelihood(); if (abs(deltaTheta) < epsilon) { break; } iter++; } } // 获取参数 double getTheta() { return theta; } // 获取对数似然函数值 double getLL() { return LL; } }; int main() { vector<double> X{1.0, 2.0, 3.0, 4.0, 5.0}; vector<int> Y{0, 0, 1, 1, 1}; ProbitModel pm(X, Y); pm.fit(); cout << "theta = " << pm.getTheta() << endl; cout << "LL = " << pm.getLL() << endl; return 0; } ``` 以上代码实现了一个简单的Probit模型,使用了牛顿法来求解模型参数。在main函数中,我们定义了一个样本,其中X为自变量,Y为因变量,表示是否购买某个产品。然后我们创建了一个ProbitModel对象pm,并调用其fit方法来拟合模型并求解参数。最后,我们输出了参数theta和对数似然函数值LL。 需要注意的是,Probit模型假设选择行为服从正态分布,因此我们在实现CDF函数时使用了误差函数erf,这需要包含cmath头文件。此外,由于Probit模型涉及到对数似然函数的计算,因此我们需要对结果进行判断,避免出现NaN或-inf等不合法的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值