【深度学习】Pytorch官方教程之生成对抗示例

英文教程:https://pytorch.org/tutorials/beginner/fgsm_tutorial.html

中文翻译:http://pytorch123.com/FourSection/AdversarialExampleGene/

因为在实现过程中涉及到模型的训练、保存和加载,还有数据的离线加载等基础方法,所以记录一下。

一、LeNet 

示例中的被攻击模型是用于识别手写数字的LeNet,可以下载并直接使用预训练模型,但是下载速度很慢,所以我从头训练了:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
import os

device = ('cuda' if torch.cuda.is_available() else 'cpu')

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='./data', train=True, download=True,
                   transform=transforms.ToTensor()), batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='./data', train=False, download=True,
                   transform=transforms.ToTensor()), batch_size=64, shuffle=True)

model = LeNet().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01)

def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 500 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss:{:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

def test():
    with torch.no_grad():
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)

            # 累加批量损失
            test_loss += F.nll_loss(output, target, size_average=False).item()
            # 获取最大对数概率的索引
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

        test_loss /= len(test_loader.dataset)
        print('\nTest set:Average loss: {:.4f}, Accuracy:{}/{} ({:.0f}%)\n'
              .format(test_loss, correct, len(test_loader.dataset),
                      100. * correct / len(test_loader.dataset)))

for epoch in range(1, 10+1):
    train(epoch)
    test()

save_dir = os.path.join('data', 'save')
model_name = 'LeNet'
PATH = os.path.join(save_dir, model_name)
torch.save(model.state_dict(), PATH)

设置保存路径并保存模型,在攻击的时候加载。

二、MNIST数据读取

也是由于下载速度原因,先下载到文件夹里,在使用torch.utils.data.DataLoader读取。注意训练LeNet的时候batch_size是64,在攻击时只加载测试数据并且batch_size=1。

三、FGSM算法攻击

from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt


epsilons = [0, .05, .1, .15, .2, .25, .3]
pretrained_model = "data/save/LeNet"
use_cuda = False

# 定义LeNet模型
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

# 声明MNIST测试数据集和数据加载

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, download=True, transform=transforms.Compose([
        transforms.ToTensor(),
    ])), batch_size=1, shuffle=True
)


# test_loader = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())

# 定义使用的设备
print('CUDA Available:', torch.cuda.is_available())
device = torch.device('cuda' if (use_cuda and torch.cuda.is_available()) else 'cpu')

# 初始化网络
model = LeNet().to(device)

# 加载已经与训练的模型
model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))

# 在评估模式下设置模型。在这种情况下,这适用于Dropout图层
model.eval()

def fgsm_attack(image, epsilon, data_grad):
    # 收集数据梯度的元素符号
    sign_data_grad = data_grad.sign()
    # 通过调整输入图像的每个像素来创建扰动图像
    perturbed_image = image + epsilon*sign_data_grad
    # 添加剪切以维持【0, 1]范围
    perturbed_image = torch.clamp(perturbed_image, 0, 1)
    # 返回扰动的图像
    return perturbed_image

def test(model, device, test_loader, epsilon):
    # 精度计数器
    correct = 0
    adv_examples = []
    # 循环遍历测试集中的所有数据
    for data, target in test_loader:
        # 把数据和标签发送到设备
        data, target = data.to(device), target.to(device)
        # 设置张量的required_grad属性。这对攻击很关键
        data.requires_grad = True
        # 通过模型前向传递数据
        output = model(data)
        init_pred = output.max(1, keepdim=True)[1] # get the idex of the max log-probability
        # 如果初始预测是错误的,不打断攻击,继续
        if init_pred.item() != target.item():
            continue
        # 计算损失
        loss = F.nll_loss(output, target)
        # 将所有梯度归零
        model.zero_grad()
        # 计算反向传播梯度
        loss.backward()
        # 收集datagrad
        data_grad = data.grad.data
        # 唤醒FGSM进行攻击
        perturbed_data = fgsm_attack(data, epsilon, data_grad)
        # 重新分类受扰乱的图像
        output = model(perturbed_data)
        # 检查是否成功
        final_pred = output.max(1, keepdim=True)[1]
        if final_pred.item() == target.item():
            correct += 1
            # 保存0 epsilon示例的特例
            if (epsilon == 0) and (len(adv_examples) < 5):
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))
        else:
            # 稍后保存一些用于可视化的示例
            if len(adv_examples) < 5:
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))

    # 计算这个epsilon的最终准确度
    final_acc = correct / float(len(test_loader))
    print("Epsilon:{}\tTest Accuracy = {} / {} = {}".format(epsilon, correct, len(test_loader),
                                                                                  final_acc))
    # 返回准确性和对抗性示例
    return final_acc, adv_examples

accuracies = []
examples = []

# 对每个epsilon运行测试
for eps in epsilons:
    acc, ex = test(model, device, test_loader, eps)
    accuracies.append(acc)
    examples.append(ex)

plt.figure(figsize=(5, 5))
plt.plot(epsilons, accuracies, "*")
plt.yticks(np.arange(0, 1.1, step=0.1))
plt.xticks(np.arange(0, .35, step=0.05))
plt.title("Accuracy vs epsilon")
plt.xlabel('Epsilon')
plt.ylabel('Accuracy')
plt.show()

# 在每个epsilon上绘制几个对抗样本的例子
cnt = 0
plt.figure(figsize=(8, 10))
for i in range(len(epsilons)):
    for j in range(len(examples[i])):
        cnt += 1
        plt.subplot(len(epsilons), len(examples[0]), cnt)
        plt.xticks([], [])
        plt.yticks([], [])
        if j == 0:
            plt.ylabel('Eps: {}'.format(epsilons[i]), fontsize=14)
        orig, adv, ex = examples[i][j]
        plt.title("{} -> {}".format(orig, adv))
        plt.imshow(ex, cmap="gray")
plt.tight_layout()
plt.show()

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值