【PyTorch】教程:对抗学习实例生成

ADVERSARIAL EXAMPLE GENERATION

研究推动 ML 模型变得更快、更准、更高效。设计和模型的安全性和鲁棒性经常被忽视,尤其是面对那些想愚弄模型故意对抗时。

本教程将提供您对 ML 模型的安全漏洞的认识,并将深入了解对抗性机器学习这一热门话题。在图像中添加难以察觉的扰动会导致模型性能的显著不同,鉴于这是一个教程,我们将通过图像分类器的示例来探讨这个主题。具体来说,我们将使用第一种也是最流行的攻击方法之一,快速梯度符号攻击( FGSM )来欺骗 MNIST 分类器。

Threat Model (攻击模型)

在论文中,有许多类型的对抗攻击,每种攻击都有不同的目标和攻击者的知识假设。然而,总的来说,首要目标是向输入数据添加最小数量的扰动,以导致期望的错误分类。攻击者的知识有几种假设,其中两种是: white-box (白盒)和 black-box黑盒);白盒攻击假定攻击者具有对模型的完整知识和访问权限,包括体系结构、输入、输出和权重。黑盒攻击假设攻击者只能访问模型的输入和输出,并且对底层架构或权重一无所知。还有几种类型的目标,包括 misclassification错误分类)和 source/target misclassification 源/目标错误分类错误分类的目标意味着对手只希望输出分类错误,而不在乎新的分类是什么。源/目标错误分类意味着对手希望更改最初属于特定源类别的图像,从而将其分类为特定目标类别。

Fast Gradient Sign Attack

FGSM 攻击是白盒攻击,目标是错误分类。

迄今为止最早也是最流行的的对抗攻击是 Fast Gradient Sign Attack, FGSMExplaining and Harnessing Adversarial Examples),这种攻击非常强大, 也很直观。它旨在利用神经网络的学习方式,即梯度来攻击神经网络。这个想法很简单,而不是通过基于反向传播梯度调整权重来最小化损失,而是基于相同的反向传播梯度来调整输入数据以最大化损失。换句话说,攻击使用输入数据的损失梯度,然后调整输入数据以最大化损失。

在这里插入图片描述

从图中可以看出, x x x 是被正确分类为 panda 的原始图像, y y y x x x 的正确标签, θ \theta θ 代表的是模型参数,$ J(\theta, x, y)$ 是训练网络的 loss 。攻击反向传播梯度到输入数据计算 ∇ x J ( θ , x , y ) \nabla_x J(\theta, x, y) xJ(θ,x,y) , 然后利用很小的步长 ( ϵ \epsilon ϵ 或 0.007 ) 在某个方向上最大化损失(例如: s i g n ( ∇ x J ( θ , x , y ) ) sign(\nabla_x J(\theta, x, y)) sign(xJ(θ,x,y)) ),最后的扰动图像 x ′ x' x 最后被错误分类为 gibbon, 实际上图像还是 panda

import torch
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 
from torchvision import datasets, transforms 
import numpy as np 
import matplotlib.pyplot as plt 

from six.moves import urllib 
opener = urllib.request.build_opener() 
opener.addheaders = [('User-agent', 'Mozilla/5.0')] 
urllib.request.install_opener(opener) 

Implementation

本节中,我们将讨论教程的输入参数,定义攻击下的模型,以及相关的测试

Inputs

三个输入:

  • epsilons: epsilon 列表值,保持 0 在列表中非常重要,代表着原始模型的性能。 epsilon 越大代表着攻击越大。
  • pretrained_model: 预训练模型,训练模型的代码在 这里. 也可以直接下载 预训练模型. 因为 google drive 无法下载,所以还可以在 CSDN资源 下载
  • use_cuda: 使用 GPU;

Model Under Attack

定义了模型和 DataLoader,初始化模型和加载权重。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


epsilons = [0, .05, .1, .15, .2, .25, .3]
pretrained_model = "lenet_mnist_model.pt"
use_cuda = True

# MNIST Test dataset and dataloader declaration
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../../../datasets', train=False, download=True, transform=transforms.Compose([
        transforms.ToTensor(),
    ])),
    batch_size=1, shuffle=True)

print("CUDA Available: ", torch.cuda.is_available())
device = torch.device('cuda' if (use_cuda and torch.cuda.is_available()) else 'cpu')

# init network
model = Net().to(device)

# load the pretrained model 
model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))

# set the model in evaluation mode. In this case this is for the Dropout layers
model.eval()
CUDA Available:  True
Net(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
  (dropout1): Dropout(p=0.25, inplace=False)
  (dropout2): Dropout(p=0.5, inplace=False)
  (fc1): Linear(in_features=9216, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=10, bias=True)
)

FGSM Attack (FGSM 攻击)

我们现在定义一个函数创建一个对抗实例,通过对原始输入进行干扰。 fgsm_attack 函数有3个输入,原始输入图像 x x x,像素方向扰动量 ϵ \epsilon ϵ ,梯度损失,(例如 ∇ x J ( θ , x , y ) \nabla_x J(\mathbf{\theta}, \mathbf{x}, y) xJ(θ,x,y)

创建干扰图像

p e r t u r b e d i m a g e = i m a g e + e p s i l o n ∗ s i g n ( d a t a g r a d ) = x + ϵ ∗ s i g n ( ∇ x J ( θ , x , y ) ) perturbed_image=image+epsilon∗sign(data_grad)=x+ϵ∗sign(∇x J(θ,x,y)) perturbedimage=image+epsilonsign(datagrad)=x+ϵsign(xJ(θ,x,y))

最后,为了保持原始图像的数据范围,干扰图像被缩放到 [0, 1]

# FGSM attack code
def fgsm_attack(image, epsilon, data_grad):
    # collect the element-wise sign of the data gradient
    sign_data_grad = data_grad.sign()
    
    # create the perturbed image by adjusting each pixel of the input image 
    perturbed_image = image + epsilon * sign_data_grad 
    
    # adding clipping to maintain [0, 1] range 
    perturbed_image = torch.clamp(perturbed_image, 0, 1)
    
    # return the perturbed image 
    return perturbed_image

Testing Function (测试函数)

def test(model, device, test_loader, epsilon):
    # accuracy counter
    correct = 0
    adv_examples = []
    
    # loop over all examples in test set 
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)
        
        # Set requires_grad attribute of tensor. Important for Attack
        data.requires_grad = True
        
        # 
        output = model(data)
        init_pred = output.max(1, keepdim=True)[1]
        
        # if the initial prediction is wrong, don't botter attacking, just move on
        if init_pred.item() != target.item():
            continue 
        
        # calculate the loss
        loss = F.nll_loss(output, target)
        
        # zero all existing grad
        model.zero_grad()

        # calculate gradients of model in backward loss 
        loss.backward()
        
        # collect datagrad
        data_grad = data.grad.data 
        
        # call FGSM attack
        perturbed_data = fgsm_attack(data, epsilon, data_grad)
        
        # reclassify the perturbed image 
        output = model(perturbed_data)
        
        # check for success 
        final_pred = output.max(1, keepdim=True)[1]
        
        # 
        if final_pred.item() == target.item():
            correct += 1
            
            # special case for saving 0 epsilon examples
            if (epsilon == 0) and (len(adv_examples) < 5):
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))
        else:
            # Save some adv examples for visualization later
            if len(adv_examples) < 5:
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append( (init_pred.item(), final_pred.item(), adv_ex) )

    # Calculate final accuracy for this epsilon
    final_acc = correct/float(len(test_loader))
    print("Epsilon: {}\tTest Accuracy = {} / {} = {}".format(epsilon, correct, 
        len(test_loader), final_acc))

    # Return the accuracy and an adversarial example
    return final_acc, adv_examples

Run Attack (执行攻击)

实现的最后一步是执行攻击,我们针对每个 epsilon 执行全部的 test step,并且保存最终的准确率和一些成功的对抗实例。 ϵ = 0 \epsilon=0 ϵ=0 不执行攻击

accuracies = []
examples = []

# Run test for each epsilon
for eps in epsilons:
    acc, ex = test(model, device, test_loader, eps)
    accuracies.append(acc)
    examples.append(ex)
Epsilon: 0	Test Accuracy = 9906 / 10000 = 0.9906
Epsilon: 0.05	Test Accuracy = 9517 / 10000 = 0.9517
Epsilon: 0.1	Test Accuracy = 8070 / 10000 = 0.807
Epsilon: 0.15	Test Accuracy = 4242 / 10000 = 0.4242
Epsilon: 0.2	Test Accuracy = 1780 / 10000 = 0.178
Epsilon: 0.25	Test Accuracy = 1292 / 10000 = 0.1292
Epsilon: 0.3	Test Accuracy = 1180 / 10000 = 0.118

Accuracy vs Epsilon (正确率 VS epsilon)

ϵ \epsilon ϵ 增大时,我们期望正确率下降,因为大的 ϵ \epsilon ϵ 我们在方向上有大的变换可以最大化 loss. 他们的变换不是线性的,一开始下降的慢,中间下降的快,最后下降的慢。

plt.figure(figsize=(5, 5))
plt.plot(epsilons, accuracies, "*-")
plt.yticks(np.arange(0, 1.1, step=0.1))
plt.xticks(np.arange(0, .35, step=0.05))
plt.title("Accuracy vs Epsilon")
plt.xlabel("Epsilon")
plt.ylabel("Accuracy")
plt.show()

在这里插入图片描述

Sample Adversarial Examples (对抗实例)

# Plot several examples of adversarial samples at each epsilon
cnt = 0
plt.figure(figsize=(8,10))
for i in range(len(epsilons)):
    for j in range(len(examples[i])):
        cnt += 1
        plt.subplot(len(epsilons),len(examples[0]),cnt)
        plt.xticks([], [])
        plt.yticks([], [])
        if j == 0:
            plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)
        orig,adv,ex = examples[i][j]
        plt.title("{} -> {}".format(orig, adv))
        plt.imshow(ex, cmap="gray")
plt.tight_layout()
plt.show()

在这里插入图片描述

完整代码

import torch
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 
from torchvision import datasets, transforms 
import numpy as np 
import matplotlib.pyplot as plt 

from six.moves import urllib 
opener = urllib.request.build_opener() 
opener.addheaders = [('User-agent', 'Mozilla/5.0')] 
urllib.request.install_opener(opener) 

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


epsilons = [0, .05, .1, .15, .2, .25, .3]
pretrained_model = "lenet_mnist_model.pt"
use_cuda = True

# MNIST Test dataset and dataloader declaration
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../../../datasets', train=False, download=True, transform=transforms.Compose([
        transforms.ToTensor(),
    ])),
    batch_size=1, shuffle=True)

print("CUDA Available: ", torch.cuda.is_available())
device = torch.device('cuda' if (use_cuda and torch.cuda.is_available()) else 'cpu')

# init network
model = Net().to(device)

# load the pretrained model 
model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))

# set the model in evaluation mode. In this case this is for the Dropout layers
model.eval()

# FGSM attack code
def fgsm_attack(image, epsilon, data_grad):
    # collect the element-wise sign of the data gradient
    sign_data_grad = data_grad.sign()
    
    # create the perturbed image by adjusting each pixel of the input image 
    perturbed_image = image + epsilon * sign_data_grad 
    
    # adding clipping to maintain [0, 1] range 
    perturbed_image = torch.clamp(perturbed_image, 0, 1)
    
    # return the perturbed image 
    return perturbed_image


def test(model, device, test_loader, epsilon):
    # accuracy counter
    correct = 0
    adv_examples = []

    # loop over all examples in test set
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # Set requires_grad attribute of tensor. Important for Attack
        data.requires_grad = True

        #
        output = model(data)
        init_pred = output.max(1, keepdim=True)[1]

        # if the initial prediction is wrong, don't botter attacking, just move on
        if init_pred.item() != target.item():
            continue

        # calculate the loss
        loss = F.nll_loss(output, target)

        # zero all existing grad
        model.zero_grad()

        # calculate gradients of model in backward loss
        loss.backward()

        # collect datagrad
        data_grad = data.grad.data

        # call FGSM attack
        perturbed_data = fgsm_attack(data, epsilon, data_grad)

        # reclassify the perturbed image
        output = model(perturbed_data)

        # check for success
        final_pred = output.max(1, keepdim=True)[1]

        #
        if final_pred.item() == target.item():
            correct += 1

            # special case for saving 0 epsilon examples
            if (epsilon == 0) and (len(adv_examples) < 5):
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append(
                    (init_pred.item(), final_pred.item(), adv_ex))
        else:
            # Save some adv examples for visualization later
            if len(adv_examples) < 5:
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append(
                    (init_pred.item(), final_pred.item(), adv_ex))

    # Calculate final accuracy for this epsilon
    final_acc = correct/float(len(test_loader))
    print("Epsilon: {}\tTest Accuracy = {} / {} = {}".format(epsilon, correct,
                                                             len(test_loader), final_acc))

    # Return the accuracy and an adversarial example
    return final_acc, adv_examples


accuracies = []
examples = []

# Run test for each epsilon
for eps in epsilons:
    acc, ex = test(model, device, test_loader, eps)
    accuracies.append(acc)
    examples.append(ex)

plt.figure(figsize=(5, 5))
plt.plot(epsilons, accuracies, "*-")
plt.yticks(np.arange(0, 1.1, step=0.1))
plt.xticks(np.arange(0, .35, step=0.05))
plt.title("Accuracy vs Epsilon")
plt.xlabel("Epsilon")
plt.ylabel("Accuracy")
plt.show()


# Plot several examples of adversarial samples at each epsilon
cnt = 0
plt.figure(figsize=(8, 10))
for i in range(len(epsilons)):
    for j in range(len(examples[i])):
        cnt += 1
        plt.subplot(len(epsilons), len(examples[0]), cnt)
        plt.xticks([], [])
        plt.yticks([], [])
        if j == 0:
            plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)
        orig, adv, ex = examples[i][j]
        plt.title("{} -> {}".format(orig, adv))
        plt.imshow(ex, cmap="gray")
plt.tight_layout()
plt.show()

【参考】

ADVERSARIAL EXAMPLE GENERATION

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 使用PyTorch搭建对抗生成网络,可以生成石块图片。要搭建一个对抗生成网络,需要熟悉PyTorch的基本概念,以及训练网络的基础知识。另外,还要了解生成对抗网络的原理,以及如何用PyTorch搭建一个对抗生成网络。 ### 回答2: 使用PyTorch搭建对抗生成网络(GAN)来生成石块图片可以分为两个关键的部分:生成器(Generator)和判别器(Discriminator)。 首先,生成器负责生成看起来像真实石块的图片。生成器接收一个随机噪声向量作为输入,并通过一系列的反卷积(deconvolution)或转置卷积(transpose convolution)层来逐渐将输入噪声转换为石块图片。 接下来,判别器负责判断输入图片是真实石块图片还是生成生成的假图片。它是一个二进制分类器,接收输入图片并输出一个介于0和1之间的数值,表示输入图片为真实石块的概率。 GAN的训练过程采用两阶段的方式。首先,固定生成器,我们训练判别器来区分真实石块图片和生成生成的假图片。我们将真实石块图片标记为1,生成生成的假图片标记为0,并通过最小化判别器的二进制交叉熵损失函数来优化判别器的参数。 接下来,固定判别器,我们训练生成器以欺骗判别器。我们通过最大化判别器将生成的假图片标记为真实石块的概率来优化生成器的参数。因此,生成器试图生成看起来越来越像真实石块的图片。 通过交替进行这两个训练阶段,生成器和判别器的性能都会逐渐提高。最终生成器将能够生成逼真的石块图片。 虽然使用PyTorch搭建对抗生成网络需要更多的代码细节,但以上是一个基本的描述。使用这个方法你可以搭建一个生成器和判别器网络,训练它们来生成石块图片。这将需要适当调整模型架构、超参数和训练策略,以获得最佳的生成效果。 ### 回答3: 使用PyTorch搭建对抗生成网络(GAN)来生成石块图片的方法如下: 首先,导入所需的PyTorch库: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets ``` 接着,定义生成器(Generator)和判别器(Discriminator)的网络架构: ```python class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() # 定义生成器的网络架构 # ... def forward(self, x): # 定义生成器的前向传播过程 # ... return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() # 定义判别器的网络架构 # ... def forward(self, x): # 定义判别器的前向传播过程 # ... return x ``` 然后,定义训练过程: ```python # 定义超参数 epochs = 100 batch_size = 64 learning_rate = 0.0002 # 创建生成器和判别器的实例 generator = Generator() discriminator = Discriminator() # 定义损失函数和优化器 criterion = nn.BCELoss() generator_optimizer = optim.Adam(generator.parameters(), lr=learning_rate) discriminator_optimizer = optim.Adam(discriminator.parameters(), lr=learning_rate) # 定义真实和虚假的标签 real_label = 1 fake_label = 0 # 进行训练 for epoch in range(epochs): for i, data in enumerate(dataloader): # 更新判别器 discriminator.zero_grad() # 训练判别器判断真实样本 real_images = data[0].to(device) batch_size = real_images.size(0) labels = torch.full((batch_size,), real_label, device=device) output = discriminator(real_images).view(-1) discriminator_loss_real = criterion(output, labels) discriminator_loss_real.backward() real_score = output.mean().item() # 生成虚假样本并训练判别器判断虚假样本 noise = torch.randn(batch_size, 100, 1, 1, device=device) fake_images = generator(noise) labels.fill_(fake_label) output = discriminator(fake_images.detach()).view(-1) discriminator_loss_fake = criterion(output, labels) discriminator_loss_fake.backward() fake_score = output.mean().item() discriminator_loss = discriminator_loss_real + discriminator_loss_fake discriminator_optimizer.step() # 更新生成器 generator.zero_grad() labels.fill_(real_label) output = discriminator(fake_images).view(-1) generator_loss = criterion(output, labels) generator_loss.backward() generator_optimizer.step() ``` 最后,生成石块图片: ```python # 使用生成生成石块图片 num_images = 10 noise = torch.randn(num_images, 100, 1, 1, device=device) generated_images = generator(noise) # 可以保存生成的图片 for i in range(num_images): image = generated_images[i].detach().cpu() save_image(image, f"stone_{i}.png") ``` 通过以上步骤,就可以使用PyTorch搭建对抗生成网络来生成石块图片。请注意,代码中的网络结构和训练过程仅为示例,实际情况中需要根据具体需求进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄金旺铺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值