[矩阵论]任意n阶矩阵都可以相似成一个三角矩阵

使用归纳法。
显然, n = 1 n=1 n=1时成立,那么只需证明假设 n = k − 1 n=k-1 n=k1成立时,有 n = k n=k n=k成立,即证明该定理。
设: P 1 = ( x 1 , x 2 , ⋯   , x k ) P_1=(x_1,x_2,\cdots,x_k) P1=(x1,x2,,xk)
其中 x 1 , x 2 , ⋯   , x k x_1,x_2,\cdots,x_k x1,x2,,xk线性无关且 x 1 x_1 x1是矩阵特征值为 λ 1 \lambda_1 λ1时的特征向量(对其他向量并无要求),那么可得:
A P 1 = ( A x 1 , A x 2 , ⋯   , A x k ) = ( ( λ 1 x 1 , A x 2 , ⋯   , A x k ) ) AP_1=(Ax_1,Ax_2,\cdots,Ax_k)=((\lambda_1x_1,Ax_2,\cdots,Ax_k)) AP1=(Ax1,Ax2,,Axk)=((λ1x1,Ax2,,Axk))
以矩阵形式表示可得:
A P 1 = ( x 1 , x 2 , ⋯   , x k ) [ λ 1 b 12 ⋯ b 1 k 0 b 22 ⋯ b 2 k ⋮ ⋮ ⋱ ⋮ 0 b k 1 ⋯ b k k ] AP_1=(x_1,x_2,\cdots,x_k) \begin{bmatrix} \lambda_1&b_{12}&\cdots&b_{1k}\\ 0&b_{22}&\cdots&b_{2k}\\ \vdots&\vdots&\ddots&\vdots\\ 0&b_{k1}&\cdots&b_{kk} \end{bmatrix} AP1=(x1,x2,,xk)λ100b12b22bk1b1kb2kbkk
则:
P 1 − 1 A P 1 = [ λ 1 b 12 ⋯ b 1 k 0 b 22 ⋯ b 2 k ⋮ ⋮ ⋱ ⋮ 0 b k 1 ⋯ b k k ] = [ λ 1 ∗ 0 A 1 ] P_1^{-1}AP_1= \begin{bmatrix} \lambda_1&b_{12}&\cdots&b_{1k}\\ 0&b_{22}&\cdots&b_{2k}\\ \vdots&\vdots&\ddots&\vdots\\ 0&b_{k1}&\cdots&b_{kk} \end{bmatrix}= \begin{bmatrix} \lambda_1&*\\ 0&A_1 \end{bmatrix} P11AP1=λ100b12b22bk1b1kb2kbkk=[λ10A1]
由假设,矩阵为k-1阶时结论成立,那么对于矩阵 A 1 A_1 A1,存在可逆矩阵Q,使得:
Q − 1 A 1 Q = [ λ 2 ∗ ⋯ ∗ λ 3 ⋱ ⋮ ⋱ ∗ λ k ] Q^{-1}A_1Q= \begin{bmatrix} \lambda_2&*&\cdots&*\\ &\lambda_3&\ddots&\vdots\\ &&\ddots&*\\ &&&\lambda_k \end{bmatrix} Q1A1Q=λ2λ3λk
那么:
P 2 = [ 1 0 T 0 Q ] , S = P 1 P 2 P_2= \begin{bmatrix} 1&0^T\\ 0&Q \end{bmatrix},S=P_1P_2 P2=[100TQ],S=P1P2
有:
S − 1 A S = P 2 − 1 P 1 − 1 A P 1 P 2 = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ k ] S^{-1}AS=P_2^{-1}P_1^{-1}AP_1P_2= \begin{bmatrix} \lambda_1&*&\cdots&*\\ &\lambda_2&\ddots&\vdots\\ &&\ddots&*\\ &&&\lambda_k \end{bmatrix} S1AS=P21P11AP1P2=λ1λ2λk
证毕

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值