Jordan标准形变换是一种相似变换,该变换所得到的Jordan标准型矩阵具有准对角特点。
一般的Jordan标准形具有如下特点:
J
=
d
i
a
g
[
J
1
(
λ
1
)
,
J
2
(
λ
2
)
,
.
.
.
,
J
n
(
λ
n
)
]
J=diag[J_1(\lambda_1),J_2(\lambda_2),...,J_n(\lambda_n)]
J=diag[J1(λ1),J2(λ2),...,Jn(λn)]
其中,每个Jordan块的形式如下:
J
n
(
λ
n
)
=
[
λ
n
1
λ
n
1
⋱
⋱
λ
n
1
λ
n
]
J_n(\lambda_n)= \begin{bmatrix} \lambda_n&1\\ &\lambda_n&1\\ &&\ddots&\ddots\\ &&&\lambda_n&1\\ &&&&\lambda_n \end{bmatrix}
Jn(λn)=⎣⎢⎢⎢⎢⎡λn1λn1⋱⋱λn1λn⎦⎥⎥⎥⎥⎤
那么,计算Jordan标准形的要点就是求解其所有的
λ
i
\lambda_i
λi,并确定该特征值下Jordan块的阶数。
设需要求解Jordan标准形的矩阵为
A
A
A,又令
B
∼
A
B\sim A
B∼A,那么存在可逆矩阵
P
P
P使得
A
=
P
B
P
−
1
A=PBP^{-1}
A=PBP−1。对于
A
−
λ
I
A-\lambda I
A−λI,有
(
A
−
λ
I
)
=
(
P
B
P
−
1
−
λ
P
P
−
1
)
=
P
(
B
−
λ
I
)
P
−
1
(A-\lambda I)=(PBP^{-1}-\lambda PP^{-1})=P(B-\lambda I)P^{-1}
(A−λI)=(PBP−1−λPP−1)=P(B−λI)P−1成立,故
(
A
−
λ
I
)
∼
(
B
−
λ
I
)
(A-\lambda I)\sim(B-\lambda I)
(A−λI)∼(B−λI)。
由于矩阵
A
A
A的Jordan标准形
J
J
J与
A
A
A相似,那么根据相似矩阵的传递性可知
B
∼
J
B\sim J
B∼J,则
r
a
n
k
(
B
)
=
r
a
n
k
(
J
)
rank(B)=rank(J)
rank(B)=rank(J),且根据前面结论,有
r
a
n
k
(
B
−
λ
I
)
=
r
a
n
k
(
J
−
λ
I
)
rank(B-\lambda I)=rank(J-\lambda I)
rank(B−λI)=rank(J−λI),下面对矩阵
(
J
−
λ
I
)
(J-\lambda I)
(J−λI)进行分析。
由于矩阵
J
J
J为
A
A
A的Jordan标准形,那么对于
A
A
A的一个特征值
λ
1
\lambda_1
λ1,有:
(
J
−
λ
i
I
)
=
J
m
1
(
0
)
⊕
J
m
2
(
0
)
⊕
⋯
⊕
J
m
p
(
0
)
⊕
J
(
λ
)
(J-\lambda_i I)=J_{m1}(0)\oplus J_{m2}(0)\oplus \cdots \oplus J_{mp}(0)\oplus J(\lambda)
(J−λiI)=Jm1(0)⊕Jm2(0)⊕⋯⊕Jmp(0)⊕J(λ)
注意到该矩阵经过初等变换后将幂零Jordan块
J
m
(
0
)
J_m(0)
Jm(0)排列于行列序号较小的位置,且
J
(
λ
)
J(\lambda)
J(λ)是所有特征值不为
λ
i
\lambda_i
λi的Jordan块的集合,并假定其秩为
m
m
m,则有:
r
a
n
k
(
J
−
λ
i
I
)
=
r
a
n
k
J
m
1
(
0
)
+
⋯
+
r
a
n
k
J
m
p
(
0
)
+
r
a
n
k
J
(
λ
)
rank(J-\lambda_i I)=rankJ_{m1}(0)+\cdots + rankJ_{mp}(0)+rankJ(\lambda)
rank(J−λiI)=rankJm1(0)+⋯+rankJmp(0)+rankJ(λ)
那么同理:
r
a
n
k
(
J
−
λ
i
I
)
k
=
r
a
n
k
J
m
1
(
0
)
k
+
⋯
+
r
a
n
k
J
m
p
(
0
)
k
+
r
a
n
k
J
(
λ
)
k
rank(J-\lambda_i I)^k=rankJ_{m1}(0)^k+\cdots + rankJ_{mp}(0)^k+rankJ(\lambda)^k
rank(J−λiI)k=rankJm1(0)k+⋯+rankJmp(0)k+rankJ(λ)k
由于幂零矩阵
J
l
(
0
)
J_l(0)
Jl(0)的秩随着其幂次增多逐渐减少,且通过归纳可以得到如下规律:
r
a
n
k
J
l
(
0
)
=
l
−
1
rankJ_l(0)=l-1
rankJl(0)=l−1,
r
a
n
k
J
l
(
0
)
2
=
l
−
2
rankJ_l(0)^2=l-2
rankJl(0)2=l−2,
⋯
\cdots
⋯,
r
a
n
k
J
l
(
0
)
k
=
l
−
k
rankJ_l(0)^k=l-k
rankJl(0)k=l−k,
⋯
\cdots
⋯,
r
a
n
k
J
l
(
0
)
l
=
0
rankJ_l(0)^l=0
rankJl(0)l=0,即:
r
a
n
k
J
l
(
0
)
k
=
{
l
−
k
l
−
k
≥
0
,
0
l
−
k
<
0
.
rankJ_l(0)^k= \left\{ \begin{array}{ll} l-k&\text{$l-k\ge0,$}\\ 0&\text{$l-k<0$}. \end{array} \right.
rankJl(0)k={l−k0l−k≥0,l−k<0.
由此可以对
(
J
−
λ
i
I
)
(J-\lambda_i I)
(J−λiI)进行幂运算,可以发现,
n
−
r
a
n
k
(
J
−
λ
i
I
)
n-rank(J-\lambda_i I)
n−rank(J−λiI)的值就是Jordan标准形中以
λ
i
\lambda_i
λi为特征值,且秩至少为1的Jordan块的个数;同理,
r
a
n
k
(
J
−
λ
i
I
)
−
r
a
n
k
(
J
−
λ
i
I
)
2
rank(J-\lambda_i I)-rank(J-\lambda_i I)^2
rank(J−λiI)−rank(J−λiI)2的值就是Jordan标准形中以
λ
i
\lambda_i
λi为特征值,且秩至少为2的Jordan块的个数,那么可以进行如下定义:
B
=
J
−
λ
i
I
w
k
=
r
a
n
k
B
k
−
1
−
r
a
n
k
B
k
p
k
=
w
k
−
w
k
+
1
=
(
r
a
n
k
B
k
−
1
−
r
a
n
k
B
k
)
−
(
r
a
n
k
B
k
−
r
a
n
k
B
k
+
1
)
B=J-\lambda_i I\\ w_k=rankB^{k-1}-rankB^k\\ p_k=w_k-w_{k+1}=(rankB^{k-1}-rankB^k)-(rankB^{k}-rankB^{k+1})\\
B=J−λiIwk=rankBk−1−rankBkpk=wk−wk+1=(rankBk−1−rankBk)−(rankBk−rankBk+1)
其中
p
k
p_k
pk是以
λ
i
\lambda_i
λi为特征值,阶数为
k
k
k的Jordan块的个数。
特别地,规定:
w
1
=
n
−
r
a
n
k
B
w_1=n-rankB
w1=n−rankB
这样,就可以得到以
λ
i
\lambda_i
λi为特征值的Jordan块的个数及每个Jordan块的阶数。
值得注意的是,由于在计算
p
k
p_k
pk的过程中仅用到了矩阵
B
B
B的秩,故在实际计算中可以取
B
=
A
−
λ
i
I
B=A-\lambda_i I
B=A−λiI进行计算。
[矩阵论]Jordan标准形中Jordan块阶数与个数的确定
最新推荐文章于 2025-03-04 19:33:09 发布