[线性控制理论]系统能控性的Jordan标准形判据

对于状态空间表示的系统,若矩阵A不是Jordan标准形,则可以引入非奇异变换 x = T x ^ x=T\hat{x} x=Tx^ T T T n × n n\times n n×n非奇异矩阵,使得
A ^ = T − 1 A T , B ^ = T − 1 B \hat{A}=T^{-1}AT,\hat{B}=T^{-1}B A^=T1AT,B^=T1B

A ^ = [ J 1 J 2 ⋱ J l ] , B ^ n × p = [ B 1 B 2 ⋮ B l ] , \hat{A}= \begin{bmatrix} J_1&&&&\\ &J_2&&&\\ &&\ddots&\\ &&&J_l \end{bmatrix}, \hat{B}_{n\times p}= \begin{bmatrix}B_1\\B_2\\\vdots\\B_l\end{bmatrix}, A^=J1J2Jl,B^n×p=B1B2Bl,
其中 J i J_i Ji是特征值为 λ i \lambda_i λi的Jordan块的集合,并设 σ i \sigma_i σi为该特征值的重数, λ i \lambda_i λi互异。
又,非奇异变换不改变矩阵的秩,那么:
r a n k [ s I − A , B ] = r a n k [ s I − A ^ , B ^ ] rank[sI-A,B]=rank[sI-\hat{A},\hat{B}] rank[sIA,B]=rank[sIA^,B^]
则:
r a n k [ s I − A ^ , B ^ ] = r a n k [ s I − J 1 B 1 s I − J 2 B 2 ⋱ ⋮ s I − J l B l ] , rank[sI-\hat{A},\hat{B}]=rank\begin{bmatrix} sI-J_1&&&&B_1\\ &sI-J_2&&&B_2\\ &&\ddots&&\vdots\\ &&&sI-J_l&B_l\end{bmatrix}, rank[sIA^,B^]=ranksIJ1sIJ2sIJlB1B2Bl,
又知 r a n k [ s I − A , B ] rank[sI-A,B] rank[sIA,B] r a n k [ λ i I − A , B ] rank[\lambda_iI-A,B] rank[λiIA,B]等价,故:
r a n k [ λ 1 I − A , B ] = r a n k [ λ 1 I − J 1 B 1 λ 1 I − J 2 B 2 ⋱ ⋮ λ 1 I − J l B l ] rank[\lambda_1I-A,B]=rank\begin{bmatrix} \lambda_1I-J_1&&&&B_1\\ &\lambda_1I-J_2&&&B_2\\ &&\ddots&&\vdots\\ &&&\lambda_1I-J_l&B_l\end{bmatrix} rank[λ1IA,B]=rankλ1IJ1λ1IJ2λ1IJlB1B2Bl
又知道除 λ 1 I − J 1 \lambda_1I-J_1 λ1IJ1为幂零阵之外,其他Jordan块均为满秩,故右侧B矩阵可被列变换消除,形成如下形式:
r a n k [ λ 1 I − A , B ] = r a n k [ λ 1 I − J 1 B 1 λ 1 I − J 2 0 ⋱ ⋮ λ 1 I − J l 0 ] rank[\lambda_1I-A,B]=rank\begin{bmatrix} \lambda_1I-J_1&&&&B_1\\ &\lambda_1I-J_2&&&0\\ &&\ddots&&\vdots\\ &&&\lambda_1I-J_l&0\end{bmatrix} rank[λ1IA,B]=rankλ1IJ1λ1IJ2λ1IJlB100
可以得到:
r a n k [ λ 1 I − A , B ] = r a n k [ λ 1 I − J 1 , B 1 ] + σ 2 + ⋯ + σ l rank[\lambda_1I-A,B]=rank[\lambda_1I-J_1,B_1]+\sigma_2+\cdots +\sigma_l rank[λ1IA,B]=rank[λ1IJ1,B1]+σ2++σl
对矩阵 [ λ 1 I − J 1 , B 1 ] [\lambda_1I-J_1,B_1] [λ1IJ1,B1]展开,得到:
[ J 1 ( 0 ) B 1 J 2 ( 0 ) B 2 ⋱ ⋮ J p ( 0 ) B p ] \begin{bmatrix}J_1(0)&&&&B_1\\ &J_2(0)&&&B_2\\ &&\ddots&&\vdots\\ &&&J_p(0)&B_p\end{bmatrix} J1(0)J2(0)Jp(0)B1B2Bp
由幂零Jordan块J_n(0)可知,其相对应的B_n矩阵中除首行和尾行外均可被消去,余下的B矩阵的行元素为: b 1 , b 2 , ⋯   , b p b_1,b_2,\cdots,b_p b1,b2,,bp,那么该矩阵的秩为;
r a n k [ λ 1 I − J 1 , B 1 ] = σ 1 − p + r a n k [ b 1 b 2 ⋮ b p ] rank[\lambda_1I-J_1,B_1]=\sigma_1-p+rank\begin{bmatrix}b_1\\b_2\\\vdots\\b_p\end{bmatrix} rank[λ1IJ1,B1]=σ1p+rankb1b2bp
那么,可以直观地观察出若:
r a n k [ b 1 b 2 ⋮ b p ] = p rank\begin{bmatrix}b_1\\b_2\\\vdots\\b_p\end{bmatrix}=p rankb1b2bp=p
则矩阵 [ λ i I − A , B ] [\lambda_iI-A,B] [λiIA,B]行满秩,故系统完全能控。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值