定理内容:
n阶矩阵A是其特征多项式的矩阵根(零点),即令:
φ
(
λ
)
=
d
e
t
(
λ
I
−
A
)
=
λ
n
+
a
1
λ
n
−
1
+
⋯
+
a
n
−
1
λ
+
a
n
\varphi(\lambda)=det(\lambda I-A)=\lambda^n+a_1\lambda^{n-1}+\cdots+a_{n-1}\lambda +a_n
φ(λ)=det(λI−A)=λn+a1λn−1+⋯+an−1λ+an
则有:
φ
(
A
)
=
A
n
+
a
1
A
n
−
1
+
⋯
+
a
n
−
1
A
+
a
n
=
O
\varphi(A)=A^n+a_1A^{n-1}+\cdots+a_{n-1}A +a_n=O
φ(A)=An+a1An−1+⋯+an−1A+an=O
证明:
将
φ
(
λ
)
\varphi(\lambda)
φ(λ)改写为:
φ
(
λ
)
=
(
λ
−
λ
1
)
(
λ
−
λ
2
)
⋯
(
λ
−
λ
n
)
\varphi(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\cdots(\lambda-\lambda_n)
φ(λ)=(λ−λ1)(λ−λ2)⋯(λ−λn)
由定理:任意的n阶矩阵都能相似为上三角矩阵 可知,存在可逆矩阵P,使得:
P
A
P
−
1
=
[
λ
1
∗
⋯
∗
λ
2
⋱
⋮
⋱
∗
λ
n
]
PAP^{-1}= \begin{bmatrix} \lambda_1&*&\cdots&*\\ &\lambda_2&\ddots&\vdots\\ &&\ddots&*\\ &&&\lambda_n \end{bmatrix}
PAP−1=⎣⎢⎢⎢⎡λ1∗λ2⋯⋱⋱∗⋮∗λn⎦⎥⎥⎥⎤
将
P
A
P
−
1
PAP^{-1}
PAP−1代入
φ
(
λ
)
\varphi(\lambda)
φ(λ)得到:
φ
(
P
A
P
−
1
)
=
(
P
A
P
−
1
−
λ
1
I
)
(
P
A
P
−
1
−
λ
2
I
)
⋯
(
P
A
P
−
1
−
λ
n
I
)
\varphi(PAP^{-1})=(PAP^{-1}-\lambda_1 I)(PAP^{-1}-\lambda_2 I)\cdots(PAP^{-1}-\lambda_n I)
φ(PAP−1)=(PAP−1−λ1I)(PAP−1−λ2I)⋯(PAP−1−λnI)
计算:
[
0
∗
⋯
∗
λ
2
−
λ
1
⋱
⋮
⋱
∗
λ
n
−
λ
1
]
[
λ
1
−
λ
2
∗
⋯
∗
0
⋱
⋮
⋱
∗
λ
n
−
λ
2
]
⋯
[
λ
1
−
λ
n
∗
⋯
∗
λ
2
−
λ
n
⋱
⋮
⋱
∗
0
]
=
O
\begin{bmatrix} 0&*&\cdots&*\\ &\lambda_2-\lambda_1&\ddots&\vdots\\ &&\ddots&*\\ &&&\lambda_n-\lambda_1 \end{bmatrix} \begin{bmatrix} \lambda_1-\lambda_2&*&\cdots&*\\ &0&\ddots&\vdots\\ &&\ddots&*\\ &&&\lambda_n-\lambda_2 \end{bmatrix} \cdots \begin{bmatrix} \lambda_1-\lambda_n&*&\cdots&*\\ &\lambda_2-\lambda_n&\ddots&\vdots\\ &&\ddots&*\\ &&&0 \end{bmatrix}=O
⎣⎢⎢⎢⎡0∗λ2−λ1⋯⋱⋱∗⋮∗λn−λ1⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡λ1−λ2∗0⋯⋱⋱∗⋮∗λn−λ2⎦⎥⎥⎥⎤⋯⎣⎢⎢⎢⎡λ1−λn∗λ2−λn⋯⋱⋱∗⋮∗0⎦⎥⎥⎥⎤=O
即
φ
(
P
A
P
−
1
)
=
P
φ
(
A
)
P
−
1
=
O
\varphi(PAP^{-1})=P\varphi(A)P^{-1}=O
φ(PAP−1)=Pφ(A)P−1=O,故有
φ
(
A
)
=
O
.
\varphi(A)=O.
φ(A)=O.
证毕
11-17
1万+

06-08
3499
