从图中可以看出测试误差>训练误差
我的数据集是将一组数据70%作为训练数据,其余作为测试数据
正常情况应该测试误差≈训练误差(因为数据都差不多,只是将一大块数据分成两份)
而过拟合是模型过于和训练数据拟合,如下图红线,所以当添入新数据进行测试时,对模型对新数据的预测程度不够,就会出现预测误差>训练误差的情况,即出现过拟合现象
如何从tensorboard中看出模型过拟合
最新推荐文章于 2023-08-08 01:04:19 发布
从图中可以看出测试误差>训练误差
我的数据集是将一组数据70%作为训练数据,其余作为测试数据
正常情况应该测试误差≈训练误差(因为数据都差不多,只是将一大块数据分成两份)
而过拟合是模型过于和训练数据拟合,如下图红线,所以当添入新数据进行测试时,对模型对新数据的预测程度不够,就会出现预测误差>训练误差的情况,即出现过拟合现象