前言:泰勒公式是微积分知识的基础,我也是经常看了忘,忘了看,很难长时间记忆。希望通过这篇文章让大家能长时间记住泰勒公式,哪怕忘记了也能推导出来。把这个知识变成显然可得,在遇到具体的问题时,能成为工具。
1.如何直观理解泰勒公式
泰勒公式的核心思想是任意函数曲线可以通过n次代数多项式累加逼近。
用公式来表达就是:f(x) =
∑
i
=
0
n
\sum_{i=0}^n
∑i=0n
a
i
a_i
ai
x
i
x^i
xi
这公式是这篇文章第一个要记住的知识点,说的很简单,无论多复杂的函数,都可以通过简单的
x
i
x^i
xi累加来近似模拟.其实这种知识,我们在小学就已经学习过了,并没有什么稀奇的。举个例子:
(
a
+
b
)
2
(a+b)^2
(a+b)2=
a
2
a^2
a2+2ab+
b
2
b^2
b2。好像不太像是吧?换个写法就是了,f(x) =
(
1
+
x
)
2
(1+x)^2
(1+x)2=
1
2
1^2
12+2x+
x
2
x^2
x2。嗯,太简单了,再加点料:
f
(
x
)
=
f(x) =
f(x)=
(
1
+
x
)
n
(1+x)^n
(1+x)n=
∑
i
=
0
n
\sum_{i=0}^n
∑i=0n
C
n
i
C^i_n
Cni
x
i
x^i
xi
你肯定会说,你耍赖,这个分明是二项式公式。是的,我想告诉你从泰勒公式的角度看,这也是泰勒公式,啥求导并不关键,关键是:任意函数曲线可以通过n次代数多项式累加逼近。这才是缘起,才是你真需要的记住的。
2.真手推泰勒公式
为了避免你们觉得我是挂羊头卖狗肉的,我会手推一遍泰勒公式,希望大家也能记住推导过程(唯二需要记忆,看明白思路很简单)。
首先我们已经明白f(x) =
∑
i
=
0
n
\sum_{i=0}^n
∑i=0n
a
i
a_i
ai
x
i
x^i
xi,看的出来真正未知的应该是
a
i
a_i
ai的值,只要能得到
a
i
a_i
ai,我们就能得到整个公式。真手推公式走起:
从整个推导过程,大家就能明白为啥有阶乘,求导这些东西了,并不是书上显然得到的,反正我觉得挺不显然的。通过这个公式也能看出泰勒展开的一些规律,一项内容由函数某点的几阶导,阶数阶乘和x次方组成的。能想明白这个,对接下来的记忆有很大的帮助。
3.轻松记忆的规律
明白的泰勒公式中每一项的规律,那么记忆泰勒公式就变成了找规律的游戏。我来举个例子,在等价无穷小的那一章,应该明白x趋向于0时,
x
−
s
i
n
x
=
x-sinx=
x−sinx=
1
6
\frac{1}{6}
61
x
3
x^3
x3。换句话说:
s
i
n
x
=
sinx=
sinx=
x
−
x-
x−
1
6
\frac{1}{6}
61
x
3
x^3
x3
这个简单的等价无穷小公式已经把sinx的整个泰勒展开所需要的所有信息交给了你,你要做的就是找出它的规律,把sinx完全展开。
- 整个sinx展开的偶次项是不存在的,应该是求导后为0了。
- 所有项应该是正负相间的,这符合求导的规律。
- 分母应该是次数的阶乘。
显然可得: f(x) =sinx= ∑ i = 0 n \sum_{i=0}^n ∑i=0n ( − 1 ) i (-1)^{i} (−1)i 1 ( 2 ∗ i + 1 ) ! \frac{1}{(2*i+1)!} (2∗i+1)!1 x 2 ∗ i + 1 x^{2*i+1} x2∗i+1,和我们等价无穷小比较下,是符合展开规律的。
4.总结
应该能看的出整个知识的框架是建立在任意函数曲线可以通过n次代数多项式累加逼近的描述这个知识点上面的,如果大家感兴趣,我可以把必背的6个泰勒公式展开都分析一遍,可以给我留言。