如何直观理解并记住泰勒公式

本文深入浅出地介绍了泰勒公式,强调其核心思想是任意函数可以通过n次代数多项式逼近。通过实例解析和推导过程,展示了如何直观理解泰勒公式,并提供了轻松记忆的规律。例如,利用等价无穷小将sinx展开,揭示了泰勒展开的模式。文章鼓励读者通过找规律来记忆泰勒公式,而非单纯依赖公式推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:泰勒公式是微积分知识的基础,我也是经常看了忘,忘了看,很难长时间记忆。希望通过这篇文章让大家能长时间记住泰勒公式,哪怕忘记了也能推导出来。把这个知识变成显然可得,在遇到具体的问题时,能成为工具。

1.如何直观理解泰勒公式

泰勒公式的核心思想是任意函数曲线可以通过n次代数多项式累加逼近。
用公式来表达就是:f(x) = ∑ i = 0 n \sum_{i=0}^n i=0n a i a_i ai x i x^i xi
这公式是这篇文章第一个要记住的知识点,说的很简单,无论多复杂的函数,都可以通过简单的 x i x^i xi累加来近似模拟.其实这种知识,我们在小学就已经学习过了,并没有什么稀奇的。举个例子: ( a + b ) 2 (a+b)^2 (a+b)2= a 2 a^2 a2+2ab+ b 2 b^2 b2。好像不太像是吧?换个写法就是了,f(x) = ( 1 + x ) 2 (1+x)^2 (1+x)2= 1 2 1^2 12+2x+ x 2 x^2 x2。嗯,太简单了,再加点料:

f ( x ) = f(x) = f(x)= ( 1 + x ) n (1+x)^n (1+x)n= ∑ i = 0 n \sum_{i=0}^n i=0n C n i C^i_n Cni x i x^i xi
你肯定会说,你耍赖,这个分明是二项式公式。是的,我想告诉你从泰勒公式的角度看,这也是泰勒公式,啥求导并不关键,关键是:任意函数曲线可以通过n次代数多项式累加逼近。这才是缘起,才是你真需要的记住的。

2.真手推泰勒公式

为了避免你们觉得我是挂羊头卖狗肉的,我会手推一遍泰勒公式,希望大家也能记住推导过程(唯二需要记忆,看明白思路很简单)。
首先我们已经明白f(x) = ∑ i = 0 n \sum_{i=0}^n i=0n a i a_i ai x i x^i xi,看的出来真正未知的应该是 a i a_i ai的值,只要能得到 a i a_i ai,我们就能得到整个公式。手推公式走起:
真手推公式

从整个推导过程,大家就能明白为啥有阶乘,求导这些东西了,并不是书上显然得到的,反正我觉得挺不显然的。通过这个公式也能看出泰勒展开的一些规律,一项内容由函数某点的几阶导,阶数阶乘和x次方组成的。能想明白这个,对接下来的记忆有很大的帮助。

3.轻松记忆的规律

明白的泰勒公式中每一项的规律,那么记忆泰勒公式就变成了找规律的游戏。我来举个例子,在等价无穷小的那一章,应该明白x趋向于0时, x − s i n x = x-sinx= xsinx= 1 6 \frac{1}{6} 61 x 3 x^3 x3。换句话说:
s i n x = sinx= sinx= x − x- x 1 6 \frac{1}{6} 61 x 3 x^3 x3
这个简单的等价无穷小公式已经把sinx的整个泰勒展开所需要的所有信息交给了你,你要做的就是找出它的规律,把sinx完全展开。

  1. 整个sinx展开的偶次项是不存在的,应该是求导后为0了。
  2. 所有项应该是正负相间的,这符合求导的规律。
  3. 分母应该是次数的阶乘。

显然可得: f(x) =sinx= ∑ i = 0 n \sum_{i=0}^n i=0n ( − 1 ) i (-1)^{i} (1)i 1 ( 2 ∗ i + 1 ) ! \frac{1}{(2*i+1)!} (2i+1)!1 x 2 ∗ i + 1 x^{2*i+1} x2i+1,和我们等价无穷小比较下,是符合展开规律的。

4.总结

应该能看的出整个知识的框架是建立在任意函数曲线可以通过n次代数多项式累加逼近的描述这个知识点上面的,如果大家感兴趣,我可以把必背的6个泰勒公式展开都分析一遍,可以给我留言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值