02-常见函数的求导公式

求导公式

  1. 基本函数
  2. 四则运算
  3. 复合函数 根据三种公式组合就可以求出任何公式的导数值

基本函数

  1. 幂函数 (Power function):
    ( x n ) ′ = n ⋅ x n − 1 (x^n)' = n \cdot x^{n-1} (xn)=nxn1

  2. 指数函数 (Exponential function):
    ( e x ) ′ = e x (e^x)' = e^x (ex)=ex

  3. 以a为底的指数函数:
    ( a x ) ′ = a x ⋅ ln ⁡ ( a ) (a^x)' = a^x \cdot \ln(a) (ax)=axln(a)

  4. 对数函数 (Logarithmic function):
    ( l n x ) ′ = 1 x (lnx)' = \frac{1}{x } (lnx)=x1

  5. 以任意为底的对数函数 :
    ( l o g a x ) ′ = ( l n x l n a ) ′ = 1 l n a ∗ 1 x (log_{a}x)' = (\frac{lnx}{lna})' = \frac{1}{lna}*\frac{1}{x} (logax)=(lnalnx)=lna1x1

导数的公式都可以根据下面的式子推导出来
lim ⁡ n → + ∞ ( 1 + 1 n ) n = e \lim_{{ n\to +\infty}} (1+\frac{{1}}{n})^n = e n+lim(1+n1)n=e
lim ⁡ x → 0 s i n x x = 1 \lim_{{ x\to 0}} \frac{{sinx}}{x} = 1 x0limxsinx=1

三角函数的导数不要管,我们很少会用到它,而且三角函数很讨厌,是周期性函数,而我们 的机器学习中很多时候要求是单调的函数,单调增也好,单调减也好,最好不要周期性函数

四则运算法则

导数的四则运算法则是用来计算复合函数的导数的基本规则。假设函数 f(x) 和 g(x) 在某个区间内可导,那么以下是导数的四则运算法则:

1. 加法法则:

如果 f(x) 和 g(x) 在某个区间内可导,那么对于函数 h(x) = f(x) + g(x),它的导数为:

h ′ ( x ) = f ′ ( x ) + g ′ ( x ) h'(x) = f'(x) + g'(x) h(x)=f(x)+g(x)

2. 减法法则:

如果 f(x) 和 g(x) 在某个区间内可导,那么对于函数 (h(x) = f(x) - g(x)),它的导数为:

h ′ ( x ) = f ′ ( x ) − g ′ ( x ) h'(x) = f'(x) - g'(x) h(x)=f(x)g(x)

3. 乘法法则:

如果 f(x) 和 g(x) 在某个区间内可导,那么对于函数 h(x) = f(x)*g(x),它的导数为:

h ′ ( x ) = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) h(x)=f(x)g(x)+f(x)g(x)

4. 除法法则:

如果 f(x) 和 g(x) 在某个区间内可导且 g(x) ≠ 0那么对于函数 h(x) = f(x)/g(x),它的导数为:

h ′ ( x ) = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) ( g ( x ) ) 2 h'(x) = \frac{{f'(x) \cdot g(x) - f(x) \cdot g'(x)}}{{(g(x))^2}} h(x)=(g(x))2f(x)g(x)f(x)g(x)

使用这些四则运算法则,我们可以计算复合函数的导数,使得在求导过程中更加简便和高效。

复合函数求导法则

( f ( g ( x ) ) ) ′ = f ′ ( g ) g ′ ( x ) (f(g(x)))'=f'(g)g'(x) (f(g(x)))=f(g)g(x)

导数的用途

  1. 求极值,往往设导数为 0,这里函数的导函数形式肯定得求
  2. 神经网络里面激活函数会用到,其实还是求导数为 0 的情况,只不过是复合函数形式
    e.g. f ( x ) = l o g ( 1 + x 2 + e 2 x ) f(x)=log(1+x^2+e^{2x}) f(x)=log(1+x2+e2x)
<think>好的,我现在需要处理用户的查询,关于常见求导公式的数学内容。首先,用户明确要求查找微积分中的求导公式,所以我得确保覆盖基本和常用的导数规则。用户可能正在学习微积分,需要这些公式来完成作业或复习考试。 接下来,我要考虑如何组织这些公式。用户提到要分方法或步骤,每个部分换行,避免使用“首先”、“然后”之类的词汇。因此,可能需要将不同的求导规则作为独立的部分,比如基本函数、四则运算、复合函数、隐函数等。 然后,我需要确认每个类别下的具体公式是否正确。例如,幂函数导数是否正确,指数函数和对数函数导数是否有特殊情况,比如自然对数和其他底数的处理。四则运算中的乘积法则和商法则是否正确,链式法则的应用是否明确。 另外,用户要求引用内容不能集中在末尾,所以每个公式后面可能需要直接注明来源,但根据示例回答,似乎不需要显式引用来源,而是整合信息。因此,我需要确保信息准确无误,无需标注具体来源。 还要注意数学公式的格式,行内公式用$符号,独立公式用$$。检查每个公式是否正确用符号包裹,尤其是像链式法则中的dy/dx和du/dx是否正确呈现。 然后,用户需要相关问题部分,必须基于原始问题和回答内容生成至少三个相关问题。需要确保问题相关且有逻辑联系,例如隐函数求导步骤、链式法则应用实例、高阶导数计算等。 最后,确保整个回答符合格式要求,没有使用第一人称,步骤词汇,正确使用代码块和公式格式。检查是否有遗漏的重要求导规则,比如三角函数、反三角函数、双曲函数等是否涵盖全面。 可能需要补充一些高阶内容,如一阶导数和二阶导数的例子,或者参数方程的求导方法,但根据常见性,可能用户更关注基础部分,所以保持核心内容清晰更重要。 总结:整理常见导数规则,分点列出,正确格式化公式,生成相关问题,确保符合所有用户指定的格式和内容要求。</think>**常见求导公式及适用场景** **基本函数导数** -函数:$\frac{d}{dx} x^n = nx^{n-1}$($n$为常数) - 指数函数:$\frac{d}{dx} e^x = e^x$,$\frac{d}{dx} a^x = a^x \ln a$($a>0$且$a \neq 1$) - 对数函数:$\frac{d}{dx} \ln x = \frac{1}{x}$,$\frac{d}{dx} \log_a x = \frac{1}{x \ln a}$ - 三角函数: $\frac{d}{dx} \sin x = \cos x$,$\frac{d}{dx} \cos x = -\sin x$ $\frac{d}{dx} \tan x = \sec^2 x$,$\frac{d}{dx} \cot x = -\csc^2 x$ **四则运算求导法则** - 加法/减法:$\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x)$ - 乘法法则:$\frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$ - 除法法则:$\frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$($g(x) \neq 0$) **复合函数求导(链式法则)** 若$y = f(u)$且$u = g(x)$,则: $$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$ **高阶导数** 二阶导数表示导数导数: $$\frac{d^2}{dx^2} f(x) = \frac{d}{dx} \left[\frac{d}{dx} f(x)\right]$$ **隐函数求导** 对方程$F(x, y) = 0$两边同时对$x$求导,解$\frac{dy}{dx}$。例如: 对$x^2 + y^2 = 1$求导得$2x + 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x}{y}$ **参数方程求导** 若$x = x(t)$,$y = y(t)$,则: $$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad (\frac{dx}{dt} \neq 0)$$ **代码示例:符号计算导数** ```python from sympy import symbols, diff x = symbols('x') f = x**3 + 2*x + 5 derivative = diff(f, x) print(derivative) # 输出:3*x**2 + 2 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DevGeek

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值