1.网络结构:
imput
Conv1 - ReLU - Maxpooling - RNL
Conv2 - ReLU - Maxpooling - RNL
Conv3 - ReLU
Conv4 - ReLU
Conv5 - ReLU - Maxpooling
fc6 - ReLU - dropout
fc7 - ReLU - dropout
fc8 (100-way-softmax )
2.加速训练:
(1)不饱和神经元 ( Relu ) 解决了梯度消失的问题
(2)2个GPU
3.防止过拟合
-
Data Augmentation(数据增强)
(1) image transalation and horizontai reflections 训练样本之间内部依赖性强
(2)通过改变训练图像RGB通道强度来增加样本数量。 通过PCA主成分分析,成倍增加已有主成分。 -
Dropout (随机丢掉训练中的一些节点)
测试时所有神经元都参与运算,最后乘0.5后输出(平衡效果) -
LRN(归一化,提高泛化能力) 该方法已淘汰
4.数据
5.补充
----池化:
(1)AlexNet之前都使用平均池化,但本文使用最大池化,避免平均池化的模糊效果
(2)典型的池化过程是不重叠的, 但本文是重叠的,保留了更多的原信息,提升特征丰富性
(3)训练模型用了随机梯度下降法和minibatch相结合
6.发现(重点启发)
(1) 神经网络的 深度 is important
(2) weight decay 对 模型学习 很重要