1. AlexNet 论文总结

1.网络结构:

imput
Conv1 - ReLU - Maxpooling  - RNL
Conv2 - ReLU - Maxpooling  - RNL
Conv3 - ReLU
Conv4 - ReLU
Conv5 - ReLU - Maxpooling 
 fc6  - ReLU - dropout
 fc7  - ReLU - dropout
 fc8 (100-way-softmax )

2.加速训练:

(1)不饱和神经元 ( Relu ) 解决了梯度消失的问题
(2)2个GPU

3.防止过拟合

  • Data Augmentation(数据增强)
    (1) image transalation and horizontai reflections 训练样本之间内部依赖性强
    (2)通过改变训练图像RGB通道强度来增加样本数量。 通过PCA主成分分析,成倍增加已有主成分。

  • Dropout (随机丢掉训练中的一些节点)
    测试时所有神经元都参与运算,最后乘0.5后输出(平衡效果)

  • LRN(归一化,提高泛化能力) 该方法已淘汰

4.数据

在这里插入图片描述

5.补充

----池化:
(1)AlexNet之前都使用平均池化,但本文使用最大池化,避免平均池化的模糊效果
(2)典型的池化过程是不重叠的, 但本文是重叠的,保留了更多的原信息,提升特征丰富性
(3)训练模型用了随机梯度下降法和minibatch相结合

6.发现(重点启发)

(1) 神经网络的 深度 is important
(2) weight decay 对 模型学习 很重要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值