BGD(批量梯度下降)一个batch的w梯度计算方式

本文详细解析了Batch与Epoch的概念及其在神经网络训练过程中的应用。通过实例说明了一个Batch包含的样本数量如何影响一个Epoch的完成次数,以及神经元与样本之间的关系。此外,还解释了反向传播中梯度的计算方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

batch epoch

batch:批,epoch:轮 epoches:轮数

假设有2000个样本,一个batch 200个样本,则一个epoch需要10batch
假设有200个神经元,则每个样本对应一个200维的神经元,一个batch神经元的size为[200,200]
在这里插入图片描述

神经网络反向传播求w的梯度

假设一个batch有200个样本,反向传播会出现200个梯度,而w的梯度等于这两百个梯度求平均
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值