求数的绝对值一定是正数_初中数学之绝对值,掌握绝对值的非负性,体会数形结合思想...

进入初中数学,更重要的是学会很多的数学思想,在以后的解题中能够熟练应用,更深刻的理解初中数学的精髓。对于刚进入初一的同学们来说,体会各种数学思想,尤为重要。今天我们一起来学习一下绝对值,绝对值这一节可以说非常的重要,在初中的学习中,时常会遇到,而绝对值与数轴的结合正好体现了数形结合的思想,在现在以及以后的学习中非常的重要,也是考试常考的题型。下面我们一起来学习一下本节的知识。

考点一:绝对值

bb1a95fa4c9c203889f72fadd11f5ab1.png

首先明确绝对值的概念,一个数a的绝对值就是数轴上表示数a的点与原点的距离。记做|a|,这里需要注意的是,由于绝对值是两点间的距离,因此绝对值一定是大于等于0的,也就是说非负数。绝对值的判断法则:(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0。即对于任意有理数a,都有

e9acb2a0f5805c10bd38ab3213effcc6.png

例题1:|π﹣3.14|=__________.

分析:首先确定π-3.14与0的大小关系,然后在去绝对值,π约为3.1415926,那么π-3.14>0,因此有判断法则可知,等于它本身π-3.14.这里尤其注意的是,在去绝对值是,是看绝对值内整体与0的大小关系,而不是只看其中的部分,整体大于0,那么等于它本身,整体小于0,那么等于它的相反数,也就是在前面加一个“-”即可。

157630d6a0a46ac7e73984a0ddac101a.png

考点二:绝对值的性质

对于概念需要注意的几点:1、任何数都有绝对值,且只有一个,无论a取何有理数,都有lal≥0,即任何一个有理数的绝对值都是非负数,若几个非负数的和为0,那么这几个非负数均为0。绝对值最小的数是0。2、由绝对值的判断法则可知:当lal=a时,a取正数和0;当lal=-a时,a取负数和0。3、互为相反数的两个数的绝对值相等;绝对值相等的两个数相等或互为相反数.4、在数轴上,一个数离原点越近,则它的绝对值越小;离原点越远,则它的绝对值越大。5、绝对值是某个正数的数有两个,他们互为相反数。

f9c9a46469ac54a10cab2d0bcf73fc81.png

例题2:已知|x-2|与|y+5|互为相反数,求x-y的值

分析:根据相反数的定义,可知|x-2|+|y+5|=0,根据绝对值的非负性可知,|x-2|=0,|y+5|=0,然后根据绝对值的定义,可知x-2=0,y+5=0,求得x=2,y=-5.所以可以求出x-y=2-(-5)=7.

这里常考的就是绝对值的非负性,以及化简绝对值。绝对值的化简是本节的重点,也是难点,而且是整个初中阶段理解起来比较困难的知识点之一,必须深刻理解绝对值的含义。做到以后做题得心应手。

715c6a7605470d4aed0be31aa5a662df.png

考点三:有理数的比较大小

方法1、利用数轴进行有理数大小的比较。在数轴上,从左往右就是从小到大的顺序,即数轴上左边的数小于右边的数。方法二、根据前面学的正数、0、负数,可知正数大于0,0大于负数,正数大于负数,对于两个负数的大小比较,绝对值大的反而小。

例题3:如图,a、b是有理数,则下列结论正确的是( )

5e933c863acb7066d3147959937e1a9b.png

A.-b<-a<a<b; B.-a<-b<a<b;

C.-b<a<-a<b; D.-b<b<-a<a。

分析:本题考察的数形结合思想,可以根据绝对值以及相反数的相关知识,在数轴上画出-a,-b的位置,根据有理数的大小比较,结合数轴,从左往右,逐渐变大,因此本题选C.

关于绝对值,其实还有很多重点和难点,后面将会一一介绍,本节大家还要学会分类讨论的思想,因为在去绝对值的时候,会出现两个结果,因此必须分类讨论。如果有问题可以留言,后面将会一一介绍。

### 回答1: 这是一个求补码的程序,输入数据是一个有符号的8位二进制数: 1. 首先判断输入的数是正数还是负数,如果是正数,则补码就是其本身。 2. 如果是负数,则需要先将其转换为其绝对值的二进制数,然后再将其取反,最后再加1,得到其补码。 下面是程序的实现: ``` #include <stdio.h> int main() { int num, abs_num, complement; printf("请输入一个有符号的8位二进制数:"); scanf("%d", &num); if (num >= ) { complement = num; } else { abs_num = -num; complement = ~abs_num + 1; } printf("补码为:%d\n", complement); return ; } ``` 程序首先读入一个有符号的8位二进制数,然后判断其正负性。如果是正数,则直接将其赋值给补码;如果是负数,则先将其转换为其绝对值的二进制数,然后再将其取反,最后再加1,得到其补码。最后输出补码即可。 ### 回答2: 我们首先了解一下补码的定义和计算方法。在计算机中,用补码表示有符号的二进制数。对于正数而言,它的补码与原码相同;对于负数而言,它的补码是在其原码的基础上,将所有位取反并加1。 下面是设计一个求补码的程序的步骤: 1. 接收用户输入的含符号的8位二进制数data。 2. 判断data是否是负数。判断方法是用第8位(最高位)来表示正负号,0为正数,1为负数。如果是负数,则需要进行补码计算,否则直接输出data即可。 3. 对于负数,先将原码计算出来。即将data的第8位(最高位)变为0,再将其它各位进行取反操作,得到原码。 4. 再将原码转换为补码。方法是将原码的各位逐位取反,然后加1。得到的结果即为补码。 5. 输出补码结果。 下面是一个示例程序的代码实现: #include <stdio.h> int main() { int data; printf("请输入有符号的8位二进制数:"); scanf("%d", &data); if ((data & 0x80) == 0x80) // 判断是否是负数 { // 计算原码 int origin = ~data + 1; // 计算补码 int complement = ~origin + 1; printf("补码为:%d\n", complement); } else { printf("补码为:%d\n", data); } return 0; } 程序中用到了位运算符&和~,其中&表示按位与运算,~表示按位取反运算。程序中的0x80这个数是一个二进制数,其最高位为1,其它各位为0,表示数值为128,用于判断数字的正负。 ### 回答3: 补码是在二进制系统中用来表示有符号整数的一种方法。在设计一个求补码的程序时,我们需要先了解什么是补码以及其计算方法。简单来说,补码是将一个负数的绝对值取反后加1得到的结果,而正数的补码与其原码相同。这样设计的目的是使加减运算通过同样的方式进行。 接下来是设计该程序的方法: 1. 读取输入的8位二进制数 2. 判断该数是正数还是负数,可以通过判断最高位是否为1来确定。如果最高位为1,则是负数,否则是正数。 3. 如果是正数,直接返回该数的原码即可。 4. 如果是负数,需要先将其绝对值取反再加1。具体的计算方法是将该数的每一位依次取反,再加1。例如,对于-7(即11011001),其绝对值为7(01110111),取反后为10001000,加1后为10001001,即-7的补码。 5. 输出计算得到的补码。 总之,设计一个求补码的程序并不难,只需要遵循补码的计算方法即可。我们只需要考虑输入数据的情况,判断正负,再计算输出即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值