这个属于计量经济学中比较基础的一个问题,首先让我们先看一下这个卡方分布是怎么来的,首先我们得有一个正态分布的样本Y, 然后对其进行简单随机抽样(i.i.d) 。 这就涉及到另一个概念:简单随机抽样,即从任意一个总体中随机抽取样本,这个抽样的特点就是随机,而当抽到的对象来自于同一个样本时,称他们取自相同分布(identical)。由于样本为随机抽取,所以任意一个被抽取的样本并不能提供另一个样本的任何信息,我们将这种情况称为样本间相互独立(independent)。将两者结合,得出一个新名词;独立同分布。 虽然有点跑题哈哈哈哈哈,但个人认为,想要理解卡方分布的性质,先理解独立同分布很重要。 接下来讲讲卡方分布。
卡方分布
定义:m个标准正态分布的平方和服从的分布
具体操作:从样本Y(正态分布)中 随机抽取m个对象 并取其平方和
特点,样本数量越多,平方分布越接近正态分布

我们可以看到:取的样本量越多,约接近正态分布,而且X2的分布向正无穷不断延伸,这是因为随着样本数量的增加,平方和也在随之增大,而随着样本数量的增加,可取到的值越来越多,而本身被提取的对象也在正态分布之中,所以图像接近于正态分布。(由于平方的关系导致方差也增加了,所以看起来更宽一点)
图片上传失败了,我的失误