卡方分布_卡方分布与正态分布

本文介绍了卡方分布的起源,通过解释独立同分布的概念,阐述了正态分布样本的平方和如何形成卡方分布。随着样本数量增加,卡方分布趋向正态分布,并且分布范围向正无穷延伸。这一过程揭示了统计学中基础理论的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个属于计量经济学中比较基础的一个问题,首先让我们先看一下这个卡方分布是怎么来的,首先我们得有一个正态分布的样本Y, 然后对其进行简单随机抽样(i.i.d) 。 这就涉及到另一个概念:简单随机抽样,即从任意一个总体中随机抽取样本,这个抽样的特点就是随机,而当抽到的对象来自于同一个样本时,称他们取自相同分布(identical)。由于样本为随机抽取,所以任意一个被抽取的样本并不能提供另一个样本的任何信息,我们将这种情况称为样本间相互独立(independent)。将两者结合,得出一个新名词;独立同分布。 虽然有点跑题哈哈哈哈哈,但个人认为,想要理解卡方分布的性质,先理解独立同分布很重要。 接下来讲讲卡方分布。

卡方分布

定义:m个标准正态分布的平方和服从的分布

具体操作:从样本Y(正态分布)中 随机抽取m个对象 并取其平方和

特点,样本数量越多,平方分布越接近正态分布

1f8719ae6dd356edc684be36ffb186c2.png

我们可以看到:取的样本量越多,约接近正态分布,而且X2的分布向正无穷不断延伸,这是因为随着样本数量的增加,平方和也在随之增大,而随着样本数量的增加,可取到的值越来越多,而本身被提取的对象也在正态分布之中,所以图像接近于正态分布。(由于平方的关系导致方差也增加了,所以看起来更宽一点)

图片上传失败了,我的失误

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值