pandas groupby后apply、transform聚合区别

参考:https://www.jianshu.com/p/fc52d6468304
https://www.jb51.net/article/222344.htm
在这里插入图片描述

apply、transform区别:

groupby() 之后,如果是使用 apply() 或者直接使用某个统计函数,得到的新列的长度与分组得到的组数是一样的;而如果使用 transform() ,得到的新列与 DataFrame 中列的长度是一样的。

import pandas as pd

df = pd.DataFrame({
  'restaurant_id': [101,102,103,104,105,106,107],
  'address': ['A','B','C','D', 'E', 'F', 'G'],
  'city': ['London','London','London','Oxford','Oxford', 'Durham', 'Durham'],
  'sales': [10,500,48,12,21,22,14]
})

在这里插入图片描述

1、apply

### 1 apply(需要分组,再合并)

city_sales = df.groupby('city')['sales'].sum().rename('city_total_sales').reset_index()
#保留原数组需要与原数组结合合并

df_new = pd.merge(df, city_sales, how='left')

df_new['pct'] = df_new['sales'] / df_new['city_total_sales']
df_new['pct'] = df_new['pct'].apply(lambda x: format(x, '.2%'))
df_new

在这里插入图片描述

2、transform

### 2 transform
df['city_total_sales'] = df.groupby('city')['sales'].transform('sum')

df['pct'] = df['sales'] / df['city_total_sales']
df['pct'] = df['pct'].apply(lambda x: format(x, '.2%'))
df
   

在这里插入图片描述

### 使用 Pandas 的 `groupby` 方法分组后进行数据合并 在使用 Pandas 进行数据分析时,`groupby` 是一种强大的工具,可以用来对数据集按特定列或条件进行分组。为了实现更复杂的数据处理需求,在完成分组操作之后,通常还需要进一步的操作来合并这些分组的结果。 #### 合并分组后的数据 当希望将多个分组结果重新组合成一个新的 DataFrame 时,可以通过多种方式进行: - **agg/aggregate 函数**:此函数允许用户针对不同列应用不同的聚合函数,并返回一个包含所有分组结果的新表格[^2]。 ```python import numpy as np import pandas as pd df = pd.DataFrame({ 'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'baz', 'bar'], 'B': range(7), }) def sum_and_mean(x): d = {} d['sum'] = x.sum() d['mean'] = x.mean() return pd.Series(d) result = df.groupby('A')['B'].apply(sum_and_mean).reset_index() print(result) ``` 上述代码展示了如何通过自定义函数同时计算每一组内某一列的总与平均数,并将它们作为新列加入到最终输出中。 - **transform 函数**:如果目标是在原始索引基础上保留原有形状的同时添加新的字段,则应考虑使用 transform 。该方法会广播其结果至原输入长度相匹配的形式[^1]。 ```python tips = sns.load_dataset('tips') total_bill_grouped = tips.groupby(['day','smoker'])[['total_bill']] bill_per_person = total_bill_grouped.transform(lambda x: round(x / (len(tips)/x.count()), 2)) print(bill_per_person.head()) ``` 这段例子说明了怎样基于天数吸烟情况两个维度来进行分组,并为每位顾客分配他们当天消费金额占总体比例的部分。 - **pivot_table 或 crosstab 表格转换**:对于某些场景下需要创建透视表的情况来说,这两个功能非常有用。前者支持多级索引以及复杂的汇总逻辑;后者则更适合制作交叉频次分布表[^3]。 ```python # 创建简单的透视表 pd.pivot_table(df, values='D', index=['A'], columns=['C'], aggfunc=np.sum) # 制作交叉频率表 pd.crosstab(index=tips.day, columns=[tips.smoker], margins=True) ``` 以上介绍了几种常见的在 Pandas 中利用 `groupby` 完成分组后再进行数据合并的方式。实际应用场景可能会更加多样化,因此建议根据具体的业务背景选择最合适的技术方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值