LLM应用-prompt提示:让大模型总结生成思维导图

第一步:大模型生成markdown思维导图格式

例如:kimi 总结pdf文档案例:

在这里插入图片描述

在这里插入图片描述
生成的markdown格式:

# 知识图谱的构建及应用
## 一、知识图谱的构建
### 1. 数据采集
- 来源:结构化数据库、半结构化网页、非结构化文本
- 预处理:数据清洗、数据抽取、数据融合
### 2. 实体识别
- 技术:自然语言处理、机器学习
- 对象:人名、地名、组织机构名
### 3. 属性抽取
- 方法:规则匹配、基于字典或模板的方法、监督式或非监督式学习
- 属性信息:性别、年龄、职业、学历
### 4. 关系抽取
- 类型:逻辑关系、语义关系、时间关系
- 方法:基于规则的方法、基于机器学习的方法、二者结合
## 二、知识图谱的应用
### 1. 智能问答
- 示例:百度智能客服
- 功能:自动构建语义分析模型,提供精准答案
### 2. 智能医疗
- 示例:IBM Watson
- 功能:分析病历、检查报告、生理数据,提供个性化治疗决策建议
### 3. 智能推荐
- 示例:美团点评
- 功能:构建垂直领域知识图谱,提供个性化推荐服务
## 总结
### 支持技术
- 自然语言处理
- 机器学习
- 图谱推理
### 应用领域
- 智能问答
- 智能医疗
- 智能推荐
### 未来展望
- 应用领域扩展
- 技术进步
- 成为信息世界的重要技术

第二步:思维导图在线打开查看

https://markmap.js.org/repl

在这里插入图片描述
可以下载svg
在这里插入图片描述

vscode安装markmap插件:
创建md文件然后右上角打开
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值