大模型提示工程(Prompt)(下篇),思维链和思维树的进阶

本文探讨了如何利用大模型如ChatGPT的提示工程技巧,包括Zero-shot、Few-shot和LtM方法,提升模型在逻辑推理和数学问题上的表现。作者介绍了思维链和Least-to-MostPrompting策略,以及如何通过编程模板引导模型进行复杂问题的解答。最后,文章还提供了AI学习路径和资源指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在上一篇,大模型提示工程(Prompt),如何让大模型更好的为我们所用(上篇),主要是讲了我们在使用ChatGPT等大模型应用时,如何写好我们的prompt,来帮助我们获得GPT更高质量的回答。

了解了大模型提示词的一些基本原则,并善用一些模板来遵循这些原则,能够在很多方面给我们带来很大的生产力。

题外话

在我们研究如何进阶自己的prompt的同时,网上也传出了很多ChatGPT的咒语,有一个词叫做prompt creator。 让ChatGPT帮我们完善我们的prompt,感兴趣的可以看:prompt creator

ChatGPT的能力缺陷

我们在面对逻辑、推理、数学和算术的这些应用场景中,ChatGPT的表现是不满足我们的需求的。

大模型(LLM)的涌现能力

这就需要再解释另一个概念:

大模型(LLM)的涌现能力,指的是模型未经过特定任务(数据)的训练,但是在一些技术手段下,仍然能够解决某些特定领域的问题的能力。

上篇,我们也有简单提到,大模型在一些技术手段下,能够解决某些特定领域的问题,而这种技术手段就目前的研究而言,分为两类:提示工程和微调。提示工程和微调同属对模型涌现能力的引导和优化方法,但相比微调,提示工程成本更低、使用更加灵活,且对于提升模型在小语义空间内复杂语义理解效果更好

这也是从根本上,提示词工程的由来。

One-shot和Few-shot最早由OpenAI研究团队在论文《Language Models are Few-Shot Learners》中率先提出,这篇论文也是提示工程方法开山鼻祖,不仅介绍了提示工程的两大核心方法,同时也详细介绍这么做背后的具体原因。

One-shot & Few-shot提示学习法

先说Zero shot

Zero-shot(零样本) Prompt 提示词技术使得我们在无需做特定训练的情况下依然可以让大模型给我们完成一些简单的任务,我们无需提供给模型额外的数据或者做微调,在很多时候依然能得到不错的效果。Zero-shot(零样本) Prompt是一种很快速便捷的方式让我们对新任务做出尝试,很适合验证我们新的想法。

往往,在一些简单的场景中,我们优先会考虑的就是Zero-shot(零样本) Prompt。

四个经典推理问题

网上我们能很容易的搜到,在Zero-shot的情况下,逻辑推理能力较弱,只能围绕相对简单的、只有线性运算过程的推理问题进行很好的解答,对于这四个经典推理题,模型只正确回答了第一个问题,其他问题都答错了,可以说模型的推理能力很差,这个是我们进一步深入的前提,感兴趣的大家可以自己搜索一下。

在面对复杂的逻辑推理和数学算术问题等场景时,这个时候我们就需要一些进阶的提示工程

One-shot & Few-shot提示学习法

具体的应用来说,Few-shot提示方法并不复杂,只需要将一些类似的问题的问题+答案作为prompt的一部分进行输入即可

css
复制代码
Few-shot的编写格式:
当需要输入多段问答作为提示词时,以Q作为问题的开头、A作为回答的开头(也可以换成“问题”、“答案”),
并且不同的问答对话需要换行以便于更加清晰的展示,具体方法是通过转义符+换行来完成。

这就是示例的作用。

比如我们之前用的例子,在不带示例的情况下,并没有输出我们期望的结果。

image.png

在加入示例之后,很明显得到了我们希望的结果。

image.png

思维链提示法

思维链(Chain of Thought)是一种提示工具,用于帮助语言模型进行复杂的推理和思考过程。它通过引导模型逐步解决问题,以一系列连贯的步骤展示推理的思路和逻辑关系。

思维链提示的基本思想是将推理过程分解为多个步骤,并在每个步骤中指导模型逐步进行推理。每个步骤都通过自然语言描述,使模型能够理解和执行每个推理阶段所需的操作。

具体而言,思维链提示通常由多个中间步骤组成,每个中间步骤都解释了问题的一个方面或子问题。模型需要根据前一个步骤的结果和当前问题的要求来推断下一个步骤。通过这种逐步推理的方式,模型可以逐渐获得更多信息,并在整个推理过程中累积正确的推断。

Zero-shot-CoT提示方法

Zero-shot-CoT是在Few-shot思想下,一种更好的提示方法。它借助思维链(也被称为思考链,Chain of Thought,CoT)提示法来解决这个问题。一种非常简单而有效的方式是:

在提示词尾部追加一句“Let’s think step by step”,即可大幅提高模型推理能力。

如果切换到中文语境下,对指令“Let’s think step by step”进行中文翻译,做了大量的测试后,得出结论: “请一步步进行推理并得出结论”要远远好于“请让我们一步步进行思考”等类似的提示词语句

正常的prompt发问 image.png

Zero-shot-CoT提示方法 image.png

Few-shot-CoT提示方法

Zero-shot-CoT是零样本提示的情况下通过修改提示词后缀激发模型的思维链,而Few-shot-CoT则是通过编写思维链样本作为提示词,让模型学会思维链的推导方式,从而更好的完成推导任务

image.png

CoT改良方法:LEAST-TO-MOST PROMPTING(LtM提示法)

提出的背景

在谷歌大脑提出的CoT被实际验证能够大幅提升大语言模型的推理能力不久,来自谷歌大脑的另一个团队在此基础上发表了另一篇重量级论文《LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS》,并在其中提出了一种名为Least-to-Most(LtM)的提示方法,将大语言模型的推理能力进一步提高。这种名为LtM的提示方法不仅能够将模型在GSM8K上的表现提高至62%,甚至在某些特殊语义解读场景下能够达到3倍于CoT的效果。

该方法是截至目前围绕模型推理能力提升的最为有效的提示学习方法。

思想原理

LtM提示方法提出的初衷是为了解决CoT提示方法泛化能力不足的问题——即通过人工编写的思维链提示样本可能并不能够很好的迁移到别的问题当中去,换而言之,就是解决问题的流程迁移能力不足,即泛化能力不够。而这种泛化能力不足则会导致“新的问题”无法使用“老的模板”进行解决。

所以一个思想就是:让大模型自己找到解决当前问题的思维链。谷歌大脑基于这个思路开发了一种全新的提示流程,即先通过提示过程让模型找到解决该问题必须要分步解决哪几个问题,然后再通过依次解决这些问题来解决最原始的问题。

整个提示过程会分为两个阶段进行:

第一个阶段是自上而下的分解问题(Decompose Question into subquestion);

第二个阶段是自下而上的依次解决问题(Sequentially Solve Subquestion),整个依次回答问题的过程,其实就可以看成是CoT的过程,只不过LtM会要求模型根据每个不同的问题,单独生成解决问题的链路,从而能够更加精准的解决复杂推理问题。 而整个过程问题的由少变多,则是LEAST-TO-MOST一词的来源。

具体的原理分析,大家可以自行查阅资料。

理论上整个过程会有三次调用大模型的过程,问答流程如下:

按照这种方式尝试一下:

js
复制代码
Q:“艾米需要4分钟能爬到滑梯顶部,然后需要花费1分钟滑下来,现在水滑梯将在15分钟后关闭,请问在关闭之前她能滑多少次?”\ 
A:为了解决“在关闭之前她能滑多少次?”这个问题,首先需要解决的问题是

通过提示模板“To solve __, we need ti first solve:”来引导模型创建子问题

模型的推理结果如下:

image.png

LtM提示过程能够非常好的解决这个推理问题。并且,在实际测试过程中,模型不仅能够拆解任务,而且还能够自动根据拆解的子问题答案回答原始问题,最终做到在一个提示语句中对原始问题进行准确回答。

‘为了解决“ ”这个问题,我们首先要解决的问题是’也是经过验证的、最为恰当、同时也最能够得到准确回答的提示词模板,建议经常使用,并验证其功能。

总结以致用

我们梳理和了解了ChatGPT在不擅长的领域,一些提示方法。

这些深度的内容希望能在接下来帮助我们理解和掌握更加进阶的提示工程技巧,以便在大模型开发中实现更高效的应用和优化。

One-shot & Few-shot提示学习法

只需要将一些类似的问题的问题+答案作为prompt的一部分进行输入即可

Zero-shot-CoT提示方法

在提示词尾部追加一句“Let’s think step by step”,即可大幅提高模型推理能力。

如果切换到中文语境下,对指令“Let’s think step by step”进行中文翻译,做了大量的测试后,得出结论: “请一步步进行推理并得出结论”要远远好于“请让我们一步步进行思考”等类似的提示词语句

Few-shot-CoT提示方法

过编写思维链样本作为提示词,让模型学会思维链的推导方式,从而更好的完成推导任务

LEAST-TO-MOST PROMPTING(LtM提示法)

通过提示模板“To solve __, we need ti first solve:”来引导模型创建子问题

‘为了解决“ ”这个问题,我们首先要解决的问题是’也是经过验证的、最为恰当、同时也最能够得到准确回答的提示词模板,建议经常使用,并验证其功能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

### 大模型提示工程技术中的Prompt模板示例及使用方法 #### 零样本提示 (Zero-Shot Prompting) 零样本提示涉及在不向大型语言模型提供任何示例或先前上下文的情况下生成响应。这种方法适合于需要对基本问题或一般主题快速回答的情境。 例如,在处理自然语言查询时,可以直接询问模型而不给出额外背景: ```plaintext What is the capital of France? ``` 这种简单的提问方式能够有效利用模型预训练的知识库来获取即时答案[^1]。 #### 基础结构化提示 (Structured Prompts) 为了更精确地引导模型输出特定格式的内容,可以采用带有明确指令期望结果描述的基础结构化提示。这有助于提高回复的相关性准确性。 下面是一个用于总结文档片段的例子: ```plaintext Summarize this text in one sentence: "Artificial intelligence (AI) has become an integral part of modern technology, influencing various industries from healthcare to finance." ``` 此命令清晰指出了所需操作(即摘要),并限定了长度要求(一句话)。这种方式使得模型更容易理解用户的意图,并据此调整其回应模式[^2]。 #### 条件分支提示 (Conditional Branching Prompts) 有时可能希望基于某些条件改变对话流程,则可以通过设计包含逻辑判断语句的复杂提示实现这一目标。这类提示允许创建更加动态灵活的人机交互体验。 这里有一个简单例子展示了如何根据用户输入决定下一步行动: ```plaintext If you want information about AI models, type 'models'. If you are interested in learning more about prompt engineering, type 'prompts'. ``` 上述提示不仅提供了两种不同路径供选择,还明确了每种选项对应的具体话题领域,从而增强了用户体验的质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值