ollama 模型显存常驻OLLAMA_KEEP_ALIVE;支持并发访问OLLAMA_NUM_PARALLEL;支持同时推理多个模型

参考:https://blog.csdn.net/weixin_42357472/article/details/137666022
https://blog.csdn.net/qq_35762024/article/details/139549796

ollama 常见环境变量

ollama --version 

ollama serve -h

在这里插入图片描述
在这里插入图片描述

OLLAMA_DEBUG 显示额外的调试信息(例如:OLLAMA_DEBUG=1)
OLLAMA_HOST ollama服务器的IP地址(默认 127.0.0.1:11434)
OLLAMA_KEEP_ALIVE 模型在内存中加载的持续时间(默认 “5m”)
OLLAMA_MAX_LOADE

### 配置和使用 OLLAMA_NUM_PARALLEL 参数 在并行处理或多线程环境中,`OLLAMA_NUM_PARALLEL` 参数用于控制并发执行的任务数量。此参数通常定义了可以同时运行的最大线程数或进程数。 对于 `OLLAMA_NUM_PARALLEL` 的配置,在环境变量设置方面,可以通过命令行或者脚本文件来指定该参数的值: ```bash export OLLAMA_NUM_PARALLEL=4 ``` 当涉及到多线程编程时,合理设定 `OLLAMA_NUM_PARALLEL` 可以显著提高程序性能[^1]。然而需要注意的是,并发度并非越高越好;过高可能会导致上下文切换频繁,反而降低效率。因此建议根据实际硬件资源(如 CPU 核心数)以及应用特点调整这个数值。 为了更好地利用多核处理器的优势,还可以考虑采用更高级别的抽象库来进行并行化操作,比如 Python 中的 `concurrent.futures` 或者 Java 中的 Fork/Join 框架等。这些工具能够简化开发过程中的复杂逻辑管理,使得开发者更容易编写高效稳定的并行应用程序。 ```python import os from concurrent.futures import ThreadPoolExecutor, as_completed num_parallel = int(os.getenv('OLLAMA_NUM_PARALLEL', '2')) # 获取环境变量,默认为2 def task(n): print(f"Running Task {n} on thread {threading.current_thread().name}") time.sleep(1) return f"Task {n} completed" with ThreadPoolExecutor(max_workers=num_parallel) as executor: futures = [executor.submit(task, i) for i in range(num_parallel * 2)] for future in as_completed(futures): result = future.result() print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值