概念
直线拟合
霍夫直线检测是检测图像中是否存在直线,直线拟合则是假定我们已经知道点数据是在一条直线上,需要利用这些数据拟合出一条直线,但是由于噪声的存在,这条直线可能并不会通过大多数的数据点,此时,我们无法使用直线检测方式来寻找直线,而只能通过直线拟合的方式来求出这条直线。那么如何拟合直线呢?一般我们采用
最小二乘法
来保证所有数据点距离直线的距离最小,从而得出这条拟合出来的直线。
最小二乘法
最小二乘法是由勒让德在19世纪发现的,形式如下式:
标函数(观测值理论值)最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。它通过最小化误差的平方和
寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合 其他一些优化问题也可通过 最小化能量
或 最大化熵
用最小二乘法来表达。
假设现在有点
设拟合多项式为:
平方偏差为:
我们要找到一组最好的a和b
能使得所有的误差达到最小化。上面公式分别对a和b求偏导: