Deep Learning中如何选择GPU?(二)

作者:Redflashing

深度学习通常需要大规模的计算需求,作为主要运算硬件的GPU的选择决定了深度学习的体验。但是如何去选择新的GPU,哪些GPU特性十分重要?GPU RAM,核心(Core)数量,张量核心(Tensor Core)数量?如何做出最具性价比的选择?本文通过深入探讨这些问题,主要针对Ampere系列显卡为选购适用于深度学习GPU的小伙伴们给出最合适的建议。

总结

  • 避免在矿潮期间购置价格高昂的显卡。同样,在矿难后避免买到翻新矿卡
  • 尽量避免使用笔记本进行深度学习训练,同种显卡型号下台式机和笔记本会有明显差距
  • 总体最好的 GPU:RTX 3080 和 RTX 3090。
  • 对于个人用户而言避免使用的 GPU: 任何 Tesla 卡;任何专业绘图显卡(如Quadro 卡);任何 Founders Edition 卡;Titan RTX、Titan V、Titan XP,除此之外无Tensor Core(rtx20系显卡之前)的二手消费级显卡需要斟酌。
  • 颇具成本效益而价格高昂:RTX 3080。
  • 颇具成本效益而价格较便宜:RTX 3070、RTX 2060 Super。
  • 预算不够的情况下: 购买二手卡,RTX 2070(400美元)、RTX 2060(300美元)、GTX 1070(220美元)、GTX 1070 Ti(230美元)、GTX 1650 Super(190美元)。
  • 没钱: 百度的AI Studio ,Kaggle等均有免费GPU算力提供
  • Kaggle竞赛:RTX 3070
  • 计算机视觉(CV)、预训练或机器翻译研究人员:4路RTX 3090(推荐涡轮显卡)。注意配备相应的大功率电源以及扇热设备
  • 自然语言处理(NLP) 研究人员: 如果不从事机器翻译、语言建模或任何类型的预训练工作,那么 RTX 3080 就足够了而且颇具性价比。
  • 相关专业学生/从业者: 从一块 RTX 3070 开始。进一步学习,卖掉你的 RTX 3070,并购买多路RTX 3080。根据下一步选择的领域(初创公司、Kaggle、研究、深度学习应用),卖掉你的 GPU,三年后再买更合适的(下一代 RTX 40s GPU)。
  • 尝鲜小白:RTX 2060 Super 就很好,但可能需要使用新电源。如果你的主板有一个 PCIe x16 插槽,并且有一个大约 300W 的电源,那么 GTX 1050 Ti 是一个很好的选择。
  • 用于模型并行化的、少于 128 个 GPU 的 GPU 集群: 如果你可以为你的集群购买 RTX GPU:66% 的 8路RTX 3080 和 33% 的 8路RTX 3090(要确保能有效地冷却)。如果解决不了 RTX 3090 的冷却问题,那么可以购买 33% 的 RTX 6000 GPU 或 8路Tesla A100。如果不能购买 RTX GPU,那么可能会选择 8路A100 Supermicro 节点或 8路RTX 6000 节点。
  • 用于模型并行化的、128 个 GPU 的 GPU 集群: 考虑下 8路Tesla A100 设置。如果你使用超过 512 个 GPU,那么你应该考虑配置一个 DGX A100 SuperPOD 系统,以匹配你的规模。

上一篇内容链接:Deep Learning中如何选择GPU?(一)

4.3. 散热问题

​ RTX 30 系列新的风扇设计包括一个鼓风扇和一个推挽式风扇。设计非常奇特,如果你的 GPU 之间有间隙,也会非常有效。然而,如果把 GPU 堆叠在一起,就不清楚它们表现怎么样了。鼓风扇的设计和以前不同。在应该 4 PCIe 的插槽中,如果你想购买 1 到 2 个 GPU,应该没什么问题。然而,如果打算使用 3 到 4 个 RTX 30 系 GPU,那么需要去参考各类的散热报告,这里就不再进行赘述。

​ 为了克服散热问题,水冷在任何情况下都可以提供一个解决方案。许多非公版显卡也提供了 3080/RTX 3090 的水冷模块,即使在 4 路 GPU 设置中也能保持低温。如果有 4 路 GPU 深度学习工作站的需求,可以留心一体化水冷却解决方案。

​ 另一个解决方案就是购买 PCIe 扩展器,并将 GPU 在机箱内分散开。这非常有效,例如,如果台式电脑机箱中有足够的空间,那么就可以购买标准 3 槽宽的 RTX 3090,并在机箱中使用 PCIe 扩展器来把它们分散开。这样就通过一个简单的解决方案解决了 4 路 RTX 3090 设置中的空间问题和冷却问题。

4.4. 插槽设计和电源

​ 标准 RTX 3090 是一个 3 插槽宽的 GPU,所以你不能在 4 路设置中使用 NVIDIA 的默认风扇设计。因为它运行在 350W TDP 下,在多 GPU 插槽设置中很

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值