deepdiff函数返回_Keras中自定义目标函数(损失函数)

本文介绍了如何在Keras中自定义目标函数,特别是实现了IoU(Intersection over Union)作为损失函数,用于图像分割任务。通过查看Keras内置的损失函数源码,了解了损失函数的定义方式,并展示了如何将自定义的IoU损失函数应用于模型编译。
摘要由CSDN通过智能技术生成

Keras中自定义目标函数(损失函数)

在做kaggle项目时,看到一个人设计了一个unet,使用自定义的iou作为损失函数,才想起来原来可以自己设计损失函数…

为了实现自己的目标函数,自然想到先看下Keras中的目标函数是定义的,查下源码发现在/usr/local/lib/python3.5/dist-packages/keras中(我的系统是ubuntu16.04,使用系统自带的python3.5),Keras已经定义了一系列的目标函数。

当然是要先查看下Keras源码了…

"""Built-in loss functions.

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import six

from . import backend as K

from .utils.generic_utils import deserialize_keras_object

from .utils.generic_utils import serialize_keras_object

def mean_squared_error(y_true, y_pred):

return K.mean(K.square(y_pred - y_true), axis=-1)

def mean_absolute_error(y_true, y_pred):

return K.mean(K.abs(y_pred - y_true), axis=-1)

def mean_absolute_percentage_error(y_true, y_pred):

diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),

K.epsilon(),

None))

return 100. * K.mean(diff, axis=-1)

def mean_squared_logarithmic_error(y_true, y_pred):

first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)

second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)

return K.mean(K.square(first_log - second_log), axis=-1)

def squared_hinge(y_true, y_pred):

return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)

def hinge(y_true, y_pred):

return K.mean(K.maximum(1. - y_true * y_pred, 0.), axis=-1)

def categorical_hinge(y_true, y_pred):

pos = K.sum(y_true * y_pred, axis=-1)

neg = K.max((1. - y_true) * y_pred, axis=-1)

return K.maximum(0., neg - pos + 1.)

def logcosh(y_true, y_pred):

"""Logarithm of the hyperbolic cosine of the prediction error.

`log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and

to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly

like the mean squared error, but will not be so strongly affected by the

occasional wildly incorrect prediction.

# Arguments

y_true: tensor of true targets.

y_pred: tensor of predicted targets.

# Returns

Tensor with one scalar loss entry per sample.

"""

def _logcosh(x):

return x + K.softplus(-2. * x) - K.log(2.)

return K.mean(_logcosh(y_pred - y_true), axis=-1)

def categorical_crossentropy(y_true, y_pred):

return K.categorical_crossentropy(y_true, y_pred)

def sparse_categorical_crossentropy(y_true, y_pred):

return K.sparse_categorical_crossentropy(y_true, y_pred)

def binary_crossentropy(y_true, y_pred):

return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)

def kullback_leibler_divergence(y_true, y_pred):

y_true = K.clip(y_true, K.epsilon(), 1)

y_pred = K.clip(y_pred, K.epsilon(), 1)

return K.sum(y_true * K.log(y_true / y_pred), axis=-1)

def poisson(y_true, y_pred):

return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)

def cosine_proximity(y_true, y_pred):

y_true = K.l2_normalize(y_true, axis=-1)

y_pred = K.l2_normalize(y_pred, axis=-1)

return -K.sum(y_true * y_pred, axis=-1)

# Aliases.

mse = MSE = mean_squared_error

mae = MAE = mean_absolute_error

mape = MAPE = mean_absolute_percentage_error

msle = MSLE = mean_squared_logarithmic_error

kld = KLD = kullback_leibler_divergence

cosine = cosine_proximity

def serialize(loss):

return serialize_keras_object(loss)

def deserialize(name, custom_objects=None):

return deserialize_keras_object(name,

module_objects=globals(),

custom_objects=custom_objects,

printable_module_name='loss function')

def get(identifier):

"""Get the `identifier` loss function.

# Arguments

identifier: None or str, name of the function.

# Returns

The loss function or None if `identifier` is None.

# Raises

ValueError if unknown identifier.

"""

if identifier is None:

return None

if isinstance(identifier, six.string_types):

identifier = str(identifier)

return deserialize(identifier)

if isinstance(identifier, dict):

return deserialize(identifier)

elif callable(identifier):

return identifier

else:

raise ValueError('Could not interpret '

'loss function identifier:', identifier)

看到源码后,事情就简单多了

首先定义损失函数IoU

## intersection over union

def IoU(y_true, y_pred, eps=1e-6):

if np.max(y_true) == 0.0:

return IoU(1-y_true, 1-y_pred) ## empty image; calc IoU of zeros

intersection = K.sum(y_true * y_pred, axis=[1,2,3])

union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) - intersection

return -K.mean( (intersection + eps) / (union + eps), axis=0)

然后执行编译

seg_model.compile(optimizer=Adam(1e-3, decay=1e-6), loss=IoU, metrics=['binary_accuracy'])就是这么简单…

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值