傅里叶变换学习


title: 傅里叶变换学习
categories: 数学
date: 2019-08-14 17:09:27
tags: 高等数学

尝试展示傅里叶级数详细的推导过程,傅里叶变换的推导,解释频率域与时空域的关系以及高频滤波低频滤波的原理。

傅里叶计数的推导

1、任何一个函数都可以由很多个振幅不同的频率不同的三角函数拟合。这个很直观,不用过多解释。

表达式:
f ( t ) = ∑ n = 1 ∞ ( a n ∗ c o s ( 2 π n T ∗ t ) + b n ∗ s i n ( 2 π n T ∗ t ) f(t) = \sum_{n=1}^{\infty}({a_n}*{cos(\frac{2\pi n}{T}*t)+{b_n}*sin(\frac{2\pi n}{T}*t)} f(t)=n=1(ancos(T2πnt)+bnsin(T2πnt)
进一步转化为欧拉表达
f ( t ) = ∑ n = − ∞ ∞ c n ∗ e i 2 π n T t f(t)=\sum_{n =-\infty}^{\infty}{c_n*e^{i\frac{2\pi n}{T}{t}}} f(t)=n=cneiT2πnt

关 键 是 c n 怎 么 求 , 这 里 需 要 讲 清 楚 几 个 概 念 , 第 一 是 基 向 量 , 第 二 是 从 向 量 的 角 度 理 解 函 数 。 关键是c_n怎么求,这里需要讲清楚几个概念,第一是基向量,第二是从向量的角度理解函数。 cn

基向量好理解就是可以构成其他同一维度内任意向量的一组基本向量,正交基向量就是一组内积为零的基向量。从向量的角度来理解函数就需要了解一下希尔伯特空间了:

可以把函数的自变量离散为有限多个值,这样函数就是一个有限多个的很长的长度空间向量。可以证明其拥有向量的很多特点。在这里主要用到向量的内积。
f ( x ) = [ f ( x 1 ) , f ( x 2 ) , f ( x 3 ) . . . . . f ( x n ) ] f(x)= {[f(x1),f(x2),f(x3).....f(xn)]} f(x)=[f(x1),f(x2),f(x3).....f(xn)]

∣ f ( x ) ∣ 2 = ∣ f ( x 1 ) 2 , f ( x 2 ) 2 , f ( x 3 ) 2 , . . . f ( x n ) 2 ∣ |f(x)|^2 = |f(x1)^2,f(x2)^2,f(x3)^2,...f(xn)^2| f(x)2=f(x1)2,f(x2)2,f(x3)2,...f(xn)2

由上式可以看出其实函数的自己的内积,可以写成如下的积分形式:
f ( x ) ⃗ ⋅ f ( x ) ⃗ = ∣ f ( x ) ∣ 2 = ∫ f ( x ) f ( x ) d x \vec{f(x)} \cdot \vec{f(x)}=|f(x)|^2 = \int{f(x)f(x)}dx f(x) f(x) =f(x)2=f(x)f(x)dx
现在回想一下求基函数的系数怎么求的?
假 设 基 函 数 a ⃗ 与 其 它 正 交 基 函 数 组 成 了 向 量 V ⃗ 。 则 其 系 数 a 1 = v ⃗ ⋅ a ⃗ a ⃗ ⋅ a ⃗ 假设基函数 \vec{a}与其它正交基函数组成了向量\vec{V}。 则其系数a_1= \frac {\vec{v} \cdot{\vec{a}}}{\vec{a} \cdot \vec{a}} a V a1=a a v a
尝试求一下系数
a n = ∫ x = 0 x = T f ( x ) ⋅ c o s ( 2 π n T x ) d x ∫ x = 0 x = T c o s 2 ( 2 π n T x ) d x = 2 T ∫ x = 0 x = T f ( x ) ⋅ c o s ( 2 π n T x ) d x a_n = \frac{\int_{x=0}^{x=T}{f(x) \cdot {cos(\frac{2 \pi n}{T}x)dx}}}{ \int_{x=0}^{x=T}cos^2(\frac{2 \pi n}{T}x)dx}=\frac{2}{T}{\int_{x=0}^{x=T}{f(x) \cdot {cos(\frac{2 \pi n}{T}x)dx}}} an=x=0x=Tcos2(T2πnx)dxx=0x=Tf(x)cos(T2πnx)dx=T2x=0x=Tf(x)cos(T2πnx)dx
同理求一下
c n = 1 T ∫ x = 0 x = T f ( x ) ⋅ e − i ( 2 π n T x ) d x c_n = \frac{1}{T}\int_{x=0}^{x=T}{f(x) \cdot {e^{-i(\frac{2 \pi n}{T}x)}dx}} cn=T1x=0x=Tf(x)ei(T2πnx)dx
这就是傅里叶级数,在这里并没有把过程一步步推导出来主要卡在-i的位置,我不知道-i怎么出来的。另外这个合成的基函数直接求内积是0,所以其基函数内积应该是上面an和 bn的基函数内积之和才对。

傅里叶变换

暂时先不写吧,主要是是傅里叶级数理解了,傅里叶变换也就好理解了,例外这一块还需要补充知识。
F ( u ) = ∫ − ∞ ∞ f ( x ) e − i 2 π u x d x F(u)= \int_{-\infty}^{\infty}f(x)e^{-i2 \pi ux}dx F(u)=f(x)ei2πuxdx

f ( t ) = ∫ − ∞ ∞ F ( u ) e i 2 π u x d u f(t) = \int_{- \infty}^{\infty}{F(u)e^{i2 \pi ux}}du f(t)=F(u)ei2πuxdu

频率和滤波

频域和时域的关系:

[外链图片转存失败(img-93TezyfU-1565786615811)(https://chenandongtime.github.io/img/1565785135709.png)]

[外链图片转存失败(img-kxJGIcMn-1565786615817)(https://chenandongtime.github.io/img/1565785186318.png)]

所谓的时域就是能够看出随时间的改变函数只的改变,而频域只能看到随频率的改变,对应频率的幅值的变化。对于一个函数来说,其变化大的地方对应的高频函数的幅值较大,其变换小的地方高频函数的幅值小。那么所谓的高通低通滤波,就是在乘一个频率函数,低通滤波时是高频函数值为0既可以,低频为1。高通滤波时,低频函数为0,高频函数为1。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值