第二章 隐私、安全及机器学习
2.1面向隐私保护的机器学习
Privacy-Preserving Machine Learning ,PPML
包括以下几种方法:
-
安全多方计算(Secure Multi-party Computation, MPC)
-
供隐私保护模型训练和预测使用的同态加密方法(Homomorphic Encryption, HE)
-
用于防止数据泄露的差分隐私方法(Differential Privacy,DP)
2.2面向隐私保护的机器学习与安全机器学习
二者区别主要在于他们被设计用来应对不同的安全威胁:
(1)在安全机器学习中,敌手被假设违反了机器学习的完整性和可用性
(2)在PPML中,敌手被假设违反了机器学习系统的隐私性和机密性
- 完整性:对完整性的攻击可能导致机器学习系统出现检测错误,例如将入侵点检测为正常
- 可用性;可能导致系统出现分类错误,系统会变得不可用
- 机密性:机器学习系统中的敏感信息(如训练数据或训练模型)出现泄漏
2.3威胁与安全模型
-
2.3.1隐私威胁模型
对机器学习系统的攻击可能在任何阶段发生:模型训练、模型推理和数据发布。
在模型训练阶段发生的攻击叫做重构攻击。计算方的目的是重构数据提供者的原始数据,或者学习关于数据的更多信息。而不是最终模型所提供的信息,这也是联邦学习的主要隐私关注点。
在模型推理阶