《联邦学习》——个人笔记(二)

本文探讨了联邦学习中的隐私保护问题,重点介绍了安全多方计算、同态加密和差分隐私技术。安全多方计算允许计算私有输入的函数,同态加密支持在加密数据上进行计算,差分隐私通过引入噪声来保护数据隐私。文章阐述了各种攻击模型,如重构、模型反演和成员推理攻击,并讨论了敌手类型和安全模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第二章 隐私、安全及机器学习

2.1面向隐私保护的机器学习
Privacy-Preserving Machine Learning ,PPML
包括以下几种方法:

  • 安全多方计算(Secure Multi-party Computation, MPC)

  • 供隐私保护模型训练和预测使用的同态加密方法(Homomorphic Encryption, HE)

  • 用于防止数据泄露的差分隐私方法(Differential Privacy,DP)

2.2面向隐私保护的机器学习与安全机器学习

二者区别主要在于他们被设计用来应对不同的安全威胁:
(1)在安全机器学习中,敌手被假设违反了机器学习的完整性和可用性
(2)在PPML中,敌手被假设违反了机器学习系统的隐私性和机密性

  • 完整性:对完整性的攻击可能导致机器学习系统出现检测错误,例如将入侵点检测为正常
  • 可用性;可能导致系统出现分类错误,系统会变得不可用
  • 机密性:机器学习系统中的敏感信息(如训练数据或训练模型)出现泄漏

2.3威胁与安全模型

  • 2.3.1隐私威胁模型
    对机器学习系统的攻击可能在任何阶段发生:模型训练、模型推理和数据发布。
    在模型训练阶段发生的攻击叫做重构攻击。计算方的目的是重构数据提供者的原始数据,或者学习关于数据的更多信息。而不是最终模型所提供的信息,这也是联邦学习的主要隐私关注点。
    在模型推理阶

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值