AHP&AHM

一、引言

Saaty 在 1977 年提出了层次分析法 AHP,之后程乾生在 1997 年提出了属性层次模型 AHM,这两种方法都是为了解决无结构决策问题,运用 AHM 进行决策的步骤和 AHP 一样,大体可分为三步:

  1. 建立递阶层次结构;
  2. 构造判断矩阵并计算相对权;
  3. 计算方案对系统目标的合成权,以进行决策。

层次分析法和属性层次模型的核心在第 2 步,区别也在第 2 步。本文将对比介绍两种方法的原理。

二、在准则 C C C 下元素的两两比较和排序

2.1 重量模型 - 层次分析法

重量模型:设元素 u 1 , u 2 , . . . , u n u_1,u_2,...,u_n u1,u2,...,un n n n 个物体,它们的重量分别为 g 1 , g 2 , . . . , g n g_1,g_2,...,g_n g1,g2,...,gn,我们不知道物体的重量,但知道两两之间的重量比 a i j = g i / g j a_{ij}=g_i/g_j aij=gi/gj,准则 C C C 为重量。问题:已知 a i j , ( 1 ≤ i , j ≤ n ) , a_{ij},(1\le{i,j}\le{n}), aij,(1i,jn), 在准则 C C C 下对元素 u 1 , u 2 , . . . , u n u_1,u_2,...,u_n u1,u2,...,un 进行排序,即按重量大小对元素进行排序。

由上知, a i j a_{ij} aij 满足
a i j > 0 a_{ij}>0 aij>0

a i j = 1 / a j i a_{ij}=1/a_{ji} aij=1/aji

a i j a j k = a i k a_{ij}a_{jk}=a_{ik} aijajk=aik

满足 (1) 和 (2) 式的矩阵 ( a i j ) (a_{ij}) (aij) 称为正互反矩阵。满足 (3) 的正互反矩阵称为具有一致性。记 g = ( g 1 , g 2 , . . . , g n ) T g=(g_1,g_2,...,g_n)^T g=(g1,g2,...,gn)T T T T 表示转置。易知 ( a i j ) g = n g (a_{ij})g=ng (aij)g=ng,可以验证, n n n g g g 分别是矩阵 ( a i j ) (a_{ij}) (aij) 的最大特征值和相应的特征向量。对 g g g 归一化得 w = ( w 1 , w 2 , . . . , w n ) T w=(w_1,w_2,...,w_n)^T w=(w1,w2,...,wn)T w i = g i / ∑ j = i n g j w_i=g_i/\sum_{j=i}^{n}g_j wi=gi/j=ingj w w w 为相对权向量,由 w w w 可对元素按重量大小排序。

在 AHP 方法中,满足 (1) 和 (2) 的矩阵 ( a i j ) (a_{ij}) (aij) 称为判断矩阵,求它的最大特征值和相应的特征向量,经一致性检验合格后,由最大特征向量归一化后得相对权向量,并由此可对元素排序。

2.2 球赛模型 - 属性层次模型

球赛模型:设元素 u 1 , u 2 , . . . , u n u_1,u_2,...,u_n u1,u2,...,un n n n 个球队,每两个球队进行 1 场比赛,每场比赛为 1 分。 u i u_i ui u j u_j uj 比赛 ( i ≠ j ) (i\ne{j}) (i=j) u i u_i ui 得分 _ i j \__{ij} _ij u j u_j uj 得分 _ j i \__{ji} _ji 准侧 C C C 为得分。问题:已知 _ i j , ( 1 ≤ i , j ≤ n ) \__{ij},(1\le{i,j}\le{n}) _ij,(1i,jn),在准则 C C C 下对元素进行排序,即按得分多少对元素排序。

由上知, _ i j \__{ij} _ij 满足
_ i j ≥ 0 ,   _ j i ≥ 0 ,   _ i j + _ j i = 1 ,   i ≠ j \__{ij}\ge0,\ \__{ji}\ge0,\ \__{ij}+ \__{ji}=1,\ i\ne{j} _ij0, _ji0, _ij+_ji=1, i=j

_ i i = 0 \__{ii}=0 _ii=0

(5) 式表示球队 u i u_i ui 不能和自己比赛。在实际问题中, _ i j \__{ij} _ij 可在 [ 0 , 1 ] [0,1] [0,1] 内取值。
满足 (4)、(5) 的 _ i j \__{ij} _ij 称为相对属性测度,矩阵 ( _ i j ) (\__{ij}) (_ij) 称为属性判断矩阵。如果 _ i j > _ j i \__{ij}>\__{ji} _ij>_ji,则称 u i u_i ui u j u_j uj 强,记为 u i > u i u_i>u_i ui>ui,若属性判断矩阵 ( _ i j ) (\__{ij}) (_ij) 满足
当   u i > u j ,   u j > u k   时 , 有   u i > u k 当\ u_i>u_j,\ u_j>u_k\ 时,有\ u_i>u_k  ui>uj, uj>uk , ui>uk
则称 ( _ i j ) (\__{ij}) (_ij) 具有一致性。
u i u_i ui 的得分为 f i = ∑ j = 1 n _ i j f_i=\sum_{j=1}^n{\__{ij}} fi=j=1n_ij。由 (4)、(5) 可知 ∑ i = 1 n f i = n ( n − 1 ) / 2 \sum_{i=1}^nf_i=n(n-1)/2 i=1nfi=n(n1)/2
w c = ( w c u 1 , . . . , w c u n ) T ,   w c u i = 2 n ( n − 1 ) ∑ j = 1 n _ i j w_c=(w_{cu_1},...,w_{cu_n})^T,\ w_{cu_i}=\frac{2}{n(n-1)}\sum_{j=1}^n\__{ij} wc=(wcu1,...,wcun)T, wcui=n(n1)2j=1n_ij
w 0 w_0 w0 为相对属性权向量。以上讨论结果可用表 1 表示。
一种简单的一致性检验方法,是按 w c w_c wc 的排序对 ( _ i j ) (\__{ij}) (_ij) 逐行检验,如果通过,则表明 ( _ i j ) (\__{ij}) (_ij) 具有一致性。

表1 准则 C C C 下元素 u i u_i ui 的相对属性测度和属   _ i j \ \__{ij}  _ij 性权   w c u i \ w_{cu_i}  wcui
表1

2.3 注记

在现实生活中,确实存在着上述两种性质不同的模型。例如体育比赛就分成两类,一类如田径、游泳、跳水、体操、高尔夫球等等,每个运动员的成绩可以单独测量出来,一类如足球、篮球、排球、乒乓球、拳击、击剑等,每个球队或运动员的成绩只有通过两两比赛才能定出来。重量模型和球赛模型反映了这两类不同的比赛。

模型不同,处理的方法也不同。在 AHP 中要求矩阵的特征根和特征向量,在 AHM 中则不用,只需要做些加乘运算就行了。

三、判断矩阵和属性判断矩阵

在 AHP 中,判断矩阵 ( a i j ) (a_{ij}) (aij) 中的元素 a i j a_{ij} aij 由比例标度(由美国运筹学家 Saaty 提出的构造层次分析法判断矩阵的方法,如表 2 所示)给出。在准则 C C C 下, a i j = 1 a_{ij}=1 aij=1 表示 u i u_{i} ui u j u_j uj 具有相等重要性, a i j = 3 a_{ij}=3 aij=3 表示 u i u_i ui u j u_j uj 稍强, a i j = 5 a_{ij}=5 aij=5 表示 u i u_i ui u j u_j uj 强,, a i j = 7 a_{ij}=7 aij=7 表示 u i u_i ui u j u_j uj 很强,, a i j = 9 a_{ij}=9 aij=9 表示 u i u_i ui u j u_j uj 极强。

在这里插入图片描述

在 AHM 中,属性判断矩阵 ( _ i j ) (\__{ij}) (_ij) 的元素可以由比例标度 a i j a_{ij} aij 转换得到。一种比较好的转换公式为
_ i j = { U k U k + 1 a i j = k 0.5 a i j = 1 i ≠ j 1 U k + 1 a i j = 1 k \__{ij}= \begin{cases} \frac{Uk}{Uk+1} & \text{$a_{ij}=k$}\\ 0.5 & \text{$a_{ij}=1\quad i\ne{j}$}\\ \frac{1}{Uk+1} & \text{$a_{ij}=\frac{1}{k}$} \end{cases} _ij=Uk+1Uk0.5Uk+11aij=kaij=1i=jaij=k1
其中 k k k 为大于 2 的正整数, U ≥ 1 U\ge1 U1 ,通常取 U = 1 U=1 U=1 或 2,当 U → ∞ U\to\infty U 时,得到极端情况:当 a i j = k > 1 a_{ij}=k>1 aij=k>1 _ i j = 1 \__{ij}=1 _ij=1 ,当 a i j = 1 a_{ij}=1 aij=1 _ i j = 0.5 \__{ij}=0.5 _ij=0.5 ,当 a i j < 1 a_{ij}<1 aij<1 _ i j = 0 \__{ij}=0 _ij=0 ,当然,$__{ij} $ 也可由其他方法确定。

参考文献

[1] 程乾生.层次分析法AHP和属性层次模型AHM[J].系统工程理论与实践,1997(11):26-29.
[2] 李廉水,王桂芝,黄小蓉,田心如.气象灾害评估分析的AHM方法研究[J].数理统计与管理,2011,30(02):201-205.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BruceD_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值