兰勃特等角圆锥投影的双标准纬线的选择

兰勃特等角圆锥投影是一种等角投影,适用于中纬度地区的地图制作。该投影保持角度不变,双标准纬线的选择至关重要,影响投影的变形分布。确定标准纬线的方法包括使它们与制图区域边缘距离相等或根据长度均方变形最小化原则。中国全图常采用特定的标准纬线参数。
摘要由CSDN通过智能技术生成

1. 兰勃特等角圆锥投影简介

通常意义上的兰勃特投影是指兰勃特等角圆锥投影,它是设想用一个正圆锥切于或割于球面,应用等角条件将地球面投影到圆锥面上,然后沿一母线展开成平面。投影后纬线为同心圆圆弧,经线为同心圆半径。兰勃特投影没有角度变形,经线长度比和纬线长度比相等。详情参见

兰勃特等角圆锥(Lambert Conformal Conic)投影正反变换_带着地球去浪一浪的博客-CSDN博客1.引言Johann Heinrich Lambert(译为兰勃特,或兰伯特),瑞士裔德国科学家、哲学家,他首次给出了π为无理数的严格证明。1772年提出两种球面向投影面投影方式:等角圆锥投影和等积方位投影。通常所说的兰勃特投影指的是等角圆锥投影。兰勃特等角圆锥投影是设想用一个正圆锥切于或割于球面,应用等角条件将地球面投影到圆锥面上,然后沿一母线展开成平面。投影后纬线为同心圆圆弧,经线为同心圆半径。兰勃特等角圆锥投影没有角度变形,经线长度比和纬线长度比相等。适于制作沿纬线分布的中纬度地区中、小比例.https://blog.csdn.net/weixin_42428226/article/details/123631109

兰勃特投影采用双标准纬线相割,与采用单标准纬线相切比较,其投影变形小而均匀,兰勃托投影的变形分布规律是:

  • 角度没有变形;

  • 两条标准纬线上没有任何变形;

  • 等变形线和纬线一致,即同一条纬线上的变形处处相等;

  • 在同一经线上,两标准纬线外侧为正变形(长度比大于1),而两标准纬线之间 为负变形(长度比小于1)。变形比较均匀,变形绝对值也比较小;

  • 同一纬线上等经差的线段长度相等,两条纬线间的经线长度处处相等。

因此,采用双标准纬线相割的兰勃特投影需要首先确定双标准纬线。

2. 确定标准纬线的近似方法

1)标准纬线距离制图区域中部与边缘的距离相等

例如,中华人民共和国全图(南海诸岛作插图),取制图区域南北两条边缘纬线为15^{\circ}55^{\circ},得到两条标准纬线:25^{\circ}45^{\circ}

2)顾及制图区域典型形状

依据长度均方变形为最小的条件,选择标准纬线的纬度的近似公式

\phi_1 = \phi_S + \frac{\phi_N-\phi_S}{K}

\phi_2 = \phi_N - \frac{\phi_N-\phi_S}{K}

式中,\phi_1\phi_2为两条标准纬线,\phi_N\phi_S为制图区域边缘纬线,K为系数,其数值取决于制图区域不同的轮廓和形状。

  • 对于纬差较小而经差较大的区域,K\approx 7
  • 对于制图区域形状为南、北轴线较长的矩形或平行四边形,其各角皆位于边纬上,K\approx 5
  • 若制图区域为圆形或椭圆形,
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着地球去浪一浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值