Eigenvalues And Eigenvectors


The Definition of Eigenvalues and Eigenvectors

  • Definition
    A x = λ x Ax=\lambda x Ax=λx

解释:Matrix A A A 乘以 vector x x x 得到 λ x \lambda x λx 意味着,A作用于x并没有改变x的方向,只对其做了大小的改变 x x x A A A的特征向量(Eigenvector), λ \lambda λ A A A的特征值(Eigenvalue)





  • How to get Eigenvalues and Eigenvectors
  1. 首先 A x = λ x Ax=\lambda x Ax=λx ,那么, A x − λ x = 0 Ax-\lambda x=0 Axλx=0 , ( A − λ I ) x = 0 (A-\lambda I)x=0 (AλI)x=0 , 如果 x x x非0向量,则 ( A − λ I ) (A-\lambda I) (AλI)是singular的。所以det ( A − λ I ) = 0 (A-\lambda I)=0 (AλI)=0
  2. 然后,根据 ∣ A − λ I ∣ |A-\lambda I| AλI=0 , 求出Eigenvalues λ \lambda λ ,然后再根据 ( A − λ I ) x = 0 (A-\lambda I)x=0 (AλI)x=0求出Eigenvectors x x x
  3. 例子:求A的特征值和特征向量 A = [ . 8 . 3 . 2 . 7 ] A= \left[ \begin{matrix} .8 & .3 \\ .2 &.7 \end{matrix} \right] A=[.8.2.3.7]

    解:
    特征值: ∣ A − λ I ∣ = ∣ . 8 − λ . 3 . 2 . 7 − λ ∣ = 0 |A-\lambda I|= \left| \begin{matrix} .8-\lambda & .3 \\ .2 &.7 -\lambda \end{matrix} \right|=0 AλI=.8λ.2.3.7λ=0
    λ 2 − 3 2 λ + 1 2 = ( λ − 1 ) ( λ − 1 2 ) = 0                 λ 1 = 1      λ 2 = 1 2 \lambda ^{2}-\frac{3}{2}\lambda+\frac{1}{2}=(\lambda-1)(\lambda-\frac{1}{2})=0\space \space\space\space\space\space \space\space\space\space \space \space\space\space\space \lambda _1=1 \space\space \space\space\lambda _2=\frac{1}{2} λ223λ+21=(λ1)(λ21)=0               λ1=1    λ2=21


    特征向量:
    [ . 8 − 1 . 3 . 2 . 7 − 1 ] x = 0                 [ . 8 − 1 2 . 3 . 2 . 7 − 1 2 ] x = 0 \left[ \begin{matrix} .8-1 & .3 \\ .2 &.7-1 \end{matrix} \right]x=0\space \space\space\space\space\space \space\space\space\space \space \space\space\space\space \left[ \begin{matrix} .8-\frac{1}{2} & .3 \\ .2 &.7-\frac{1}{2} \end{matrix} \right]x=0 [.81.2.3.71]x=0               [.821.2.3.721]x=0
    x 1 = ( 0.6 , 0.4 )         x 2 = ( 1 , − 1 ) x_1=(0.6,0.4)\space\space\space\space\space \space\space x_2=(1,-1) x1=(0.6,0.4)       x2=(1,1)
    特征向量有很多,取最容易计算,典型值,其他的都是它的大小缩放。 A 2 A^2 A2的特征向量和A一样,特征值是 λ 1 2      λ 2 2 \lambda_1 ^2 \space\space \space\space\lambda_2 ^2 λ12    λ22,即 A 2 x = λ 2 x A^2x=\lambda^2x A2x=λ2x

在这里插入图片描述



  • Characteristics And Trick

Characteristics :

  1. 矩阵的对角元素之和(叫做Trace,中文叫做) 等于 Eigenvalues的和。
  2. 矩阵的Determinant (行列式)等于 Eigenvalues 的积。
  3. ( 2 A − I ) x = ( 2 λ − 1 ) x (2A-I)x=(2\lambda-1)x (2AI)x=(2λ1)x 意味着: 2 A − I 2A-I 2AI的Eigenvectors 都是 x x x,Eigenvalues 变成 2 λ − 1 2\lambda -1 2λ1。但是将单位阵 I I I换成其他矩阵就不一定成立,因为此时的 A A A和另一个矩阵的Eigenvectors 不一定都是x
  4. 上/下三角、对角矩阵的特征值就是对角线上的元素。
  5. A 2 A^2 A2 A − 1 A^{-1} A1 A A A 的特征向量一样,特征值是 λ 2 \lambda^2 λ2 1 λ \frac{1}{\lambda} λ1。数学语言:如果 A x = λ x Ax=\lambda x Ax=λx,那么: A 2 x = λ 2 x 和 A − 1 x = 1 λ x A^2x=\lambda ^2x 和A^{-1}x=\frac{1}{\lambda}x A2x=λ2xA1x=λ
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值