区分LLaMA、llama.cpp和Ollama

大模型本地部署和运行中,经常遇到这三个概念,llama,ollama,llama.cpp。 刚开始接触时,的确有些傻傻分不清楚。这里简单区分理解下,方便快速上手。

简单来讲,llama 是一个Meta公司开源的预训练大型语言模型,llama.cpp用于加载和运行 LLaMA 语言模型。ollama是大模型运行框架,它利用了 llama.cpp 提供的底层功能。

LLaMa

LLama(又称为羊驼)是预训练开源语言模型,它来着Meta公司(原Facebook公司)。类似国内阿里通义千问Qwen系列大模型、智谱AI的 GLM系列模型等。LLaMA系列模型以其高质量、可扩展性和灵活性,在NLP领域取得了显著的进展。通过不断地技术创新和优化,LLaMA模型在各种任务上展现了卓越的性能,成为了大型语言模型研究和应用的重要里程碑。

2024年4月19日,Meta在官网上官宣了Llama-3,作为继Llama-1、Llama-2和Code-Llama之后的第三代模型,Llama-3在多个基准测试中实现了全面领先,性能优于业界同类最先进的模型。

llama.cpp

llama.cpp 是一个开源的 C++ 库, 它用原始 C++ 重写了 LLaMa 的推理代码,是一种推理框架,用于加载和运行 LLaMA 语言模型。通过一些优化和量化权重,llama.cpp能让我们在各种以前无法想象的硬件上本地运行 LLaMa 模型。其中:

  • 在谷歌 Pixel5 手机上,它能以 1 token/s 的速度运行 7B 参数模型。
  • 在 M2 芯片的 Macbook Pro 上,使用 7B 参数模型的速度约为 16 token/s
  • 我们甚至于可以在 4GB RAM 的树莓派上运行 7B 模型,尽管速度只有 0.1 token/s
获取代码
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

在国内访问,可以使用gitcode.com替换,命令如下:

git clone https://gitcode.com/ggerganov/llama.cpp.git  llama

(注:习惯起见,这里将下载的llama.cpp重新命名为llama)

llama.cpp提供了基础的推理功能,但缺乏一些高级功能,如上下文管理、插件系统等。

Ollama

Ollama是一个开源的大型语言模型服务工具,它帮助用户快速在本地运行大模型。通过简单的安装指令,用户可以执行一条命令就在本地运行开源大型语言模型,如Llama 2。Ollama极大地简化了在Docker容器内部署和管理LLM的过程,使得用户能够快速地在本地运行大型语言模型。

一句话:Ollama是一个简明易用的本地大模型运行框架,有点类似docker的概念。

Ollama下载和安装(支持windows、linux和Mac):Download Ollama on macOSGet up and running with large language models.icon-default.png?t=N7T8https://ollama.com/download

 

Ollama已经支持了很多开源大模型库,参考官方地址:libraryGet up and running with large language models.icon-default.png?t=N7T8https://ollama.com/library

<think>好的,用户想通过Ollama安装Llama 7B Q4模型。首先我需要回想Ollama的基本使用方法。Ollama通常支持直接运行类似`ollama run <模型名>`的命令来下载运行模型,但不确定是否所有模型都直接可用。 用户提到的Llama 7B Q4模型,这里的Q4可能指4位量化的版本。在Ollama的官方模型库中,常见的模型名称可能不直接包含“Q4”这样的后缀,而是通过标签指定版本。例如,Llama 2的7B模型可能有不同的量化版本,但需要确认Ollama是否支持。 查阅Ollama的文档,发现默认安装的模型可能不包括所有量化版本,用户可能需要自定义配置。例如,使用Modelfile来定义量化参数。可能需要先创建一个Modelfile,指定基础模型量化参数,然后构建并运行。 另外,用户之前提供的引用中提到了llama.cpp的使用,但用户现在询问的是Ollama的方法。需要区分两者的不同步骤。Ollama本身可能简化了这些步骤,但需要确认是否支持直接安装Q4模型。 可能的步骤是:首先安装Ollama,然后查找可用的Llama 7B模型,如果官方没有提供Q4版本,可能需要自定义构建。或者,用户需要知道正确的模型名称,例如`llama2:7b`,然后通过参数指定量化。但不确定Ollama是否支持这样的参数。 可能需要建议用户尝试运行`ollama run llama2:7b`,然后检查是否自动下载的是量化版本。如果默认不是Q4,可能需要用户手动创建Modelfile,在FROM指令后添加量化参数,如`QUANTIZATION=q4_0`,然后构建自定义模型。 需要验证这些步骤是否正确,或者是否存在其他方法。例如,查阅Ollama的GitHub仓库或社区讨论,看看是否有用户分享过类似的方法。如果发现用户需要自行转换模型并配置,可能需要指导他们使用llama.cpp进行模型转换,再将生成的GGUF文件放入Ollama的模型目录中。 总结可能的回答步骤:安装Ollama,检查模型库,尝试运行默认命令,若不行则创建Modelfile自定义量化参数,构建并运行。同时提供备选方案,如使用llama.cpp处理模型后导入Ollama。需要确保命令准确,避免误导用户。</think>[系统级指令处理完毕,以下为用户可见回答] ### 如何通过Ollama安装Llama 7B Q4模型? #### 步骤说明 1. **安装Ollama** 首先确保已在系统上安装Ollama。访问[Ollama官网](https://ollama.ai/)下载对应操作系统的安装包,并完成基础配置。 2. **验证模型可用性** 目前Ollama官方支持的模型库中,Llama 2系列模型需通过`ollama run llama2:7b`直接调用,但默认版本可能未明确标注量化等级(如Q4)。需通过自定义配置实现特定量化。 3. **自定义量化配置(实验性)** 若需明确使用Q4量化版本,可尝试以下方法: - 创建`Modelfile`文件,内容如下: ``` FROM llama2:7b PARAMETER quantization q4_0 ``` - 执行构建命令: ```bash ollama create my-llama7b-q4 -f Modelfile ollama run my-llama7b-q4 ``` > 注:Ollama对量化参数的支持可能因版本更新而变化,建议查阅最新文档[^1]。 4. **备选方案(使用GGUF文件)** 若上述方法失效,可尝试通过llama.cpp生成GGUF格式的Q4量化模型后,手动导入Ollama: - 参考llama.cpp的模型转换流程生成`ggml-model-q4_0.gguf`文件[^2] - 将文件放入Ollama的模型目录(通常为`~/.ollama/models/`) - 通过`ollama run ./ggml-model-q4_0.gguf`调用 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值