文章目录
一、摘 要
针对PCB缺陷检测误检、漏检问题严重。提出一种基于YOLOv5 的轻量化PCB缺陷检测算法。该算法使用四尺度检测机制扩大模型检测范围,增加深层语义信息与浅层语义的融合,丰富微小缺陷的检测;通过FPGM剪枝,对模型进行压缩,降低计算量、提高推理速度,实现轻量化处理;在原有网络基础上增加CA注意力机制,过滤冗余信息,强化模型重要信息提取能力;使用聚类和遗传学习算法对锚框进行调节,加快模型收敛速度、节省训练时间,提高模型预选框准确度;结果表明,模型经过优化后,精度可达到 99.06%;在仅考虑体积情况下,模型可压缩至 0.56MB。模型在检测精度、速度和体积上均有提高,满足PCB缺陷实时检测要求。
二、轻量化 PCB 缺陷检测算法
2.1、注意力机制
CA[18]注意力机制(Coordinate Attention)将位置信息融合到通道信息中。CA 在捕获通道特征的同时,还进行方向和位置的信息捕捉。因此,CA 注意力机制能更加精准的定位和识别图像中的重要信息。如图1所示,CA 注意力机制由两部分组成。第一部分为坐标信息嵌入。图像输入注意力机制后,池化层沿着水平和垂直方向进行编码,分别得到水平和垂直方向的特征图。然后将特征图进行拼接,利用 1×1 卷积函数得到中间特征图。第二部分为坐标信息特征图生成。首先沿着空间维度分解两个张量,分别沿水平和垂直方向进行卷积和激活函数处理,然后将两个方向的输出进行融合。

使用 CA 注意力机制能够在捕获位置信息的同时对通道信息进行捕获。而且,CA 注意力的计算量较小。
2.2、FPGM 剪枝
FPGM[19](基于几何中值的卷积神经网络滤波剪枝算法)是一种通过修剪冗余滤波器的模型压缩方式。其主要思想是利用可代替性来进行模型特征的修剪,修剪掉的滤波器均为离几何中心最近的。FPAM 不再根据范数作为裁剪的标准,而是根据过滤器的可替代性确定裁剪规则。FPGM 剪枝原理如图2 所示,相较于传统剪枝方式,FPGM 保留了更多的特征信息。

针对PCB缺陷检测,本文提出基于YOLOv5的轻量化算法,结合四尺度检测、FPGM剪枝、CA注意力机制和锚框优化,提升检测精度至99.06%,同时模型压缩至0.56MB,兼顾速度和体积,有效降低漏检和误检。
最低0.47元/天 解锁文章
941

被折叠的 条评论
为什么被折叠?



