【基于 YOLOv5 的轻量化 PCB 缺陷检测】

针对PCB缺陷检测,本文提出基于YOLOv5的轻量化算法,结合四尺度检测、FPGM剪枝、CA注意力机制和锚框优化,提升检测精度至99.06%,同时模型压缩至0.56MB,兼顾速度和体积,有效降低漏检和误检。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、摘 要

针对PCB缺陷检测误检、漏检问题严重。提出一种基于YOLOv5 的轻量化PCB缺陷检测算法。该算法使用四尺度检测机制扩大模型检测范围,增加深层语义信息与浅层语义的融合,丰富微小缺陷的检测;通过FPGM剪枝,对模型进行压缩,降低计算量、提高推理速度,实现轻量化处理;在原有网络基础上增加CA注意力机制,过滤冗余信息,强化模型重要信息提取能力;使用聚类和遗传学习算法对锚框进行调节,加快模型收敛速度、节省训练时间,提高模型预选框准确度;结果表明,模型经过优化后,精度可达到 99.06%;在仅考虑体积情况下,模型可压缩至 0.56MB。模型在检测精度、速度和体积上均有提高,满足PCB缺陷实时检测要求。

二、轻量化 PCB 缺陷检测算法

2.1、注意力机制

CA[18]注意力机制(Coordinate Attention)将位置信息融合到通道信息中。CA 在捕获通道特征的同时,还进行方向和位置的信息捕捉。因此,CA 注意力机制能更加精准的定位和识别图像中的重要信息。如图1所示,CA 注意力机制由两部分组成。第一部分为坐标信息嵌入。图像输入注意力机制后,池化层沿着水平和垂直方向进行编码,分别得到水平和垂直方向的特征图。然后将特征图进行拼接,利用 1×1 卷积函数得到中间特征图。第二部分为坐标信息特征图生成。首先沿着空间维度分解两个张量,分别沿水平和垂直方向进行卷积和激活函数处理,然后将两个方向的输出进行融合。
在这里插入图片描述
使用 CA 注意力机制能够在捕获位置信息的同时对通道信息进行捕获。而且,CA 注意力的计算量较小。

2.2、FPGM 剪枝

FPGM[19](基于几何中值的卷积神经网络滤波剪枝算法)是一种通过修剪冗余滤波器的模型压缩方式。其主要思想是利用可代替性来进行模型特征的修剪,修剪掉的滤波器均为离几何中心最近的。FPAM 不再根据范数作为裁剪的标准,而是根据过滤器的可替代性确定裁剪规则。FPGM 剪枝原理如图2 所示,相较于传统剪枝方式,FPGM 保留了更多的特征信息。

基于YOLOv8n的PCB缺陷检测是一个非常有潜力的研究方向和技术应用。下面将详细介绍其可行性。 ### YOLOv8n简介 YOLO (You Only Look Once) 系列算法是计算机视觉领域中最流行的实时目标检测框架之一,而YOLOv8系列进一步提升了模型性能、速度及易用性。其中,“n”代表nano版本,意味着这是专门为轻量级应用场景设计的小型化网络结构,在保持较高精度的同时能够显著降低计算资源消耗。 ### PCB缺陷检测需求分析 印刷电路(Printed Circuit Board,简称PCB)作为电子产品的核心载体,在制造过程中容易出现各种类型的瑕疵或故障点,如焊锡不良、元件缺失、划痕等。传统的质量控制依赖人工目检或者专用设备扫描成像再由软件处理识别的方式效率低下且成本高昂。因此引入深度学习尤其是卷积神经网络来进行自动化检测成为必然趋势。 ### 使用YOLOv8n进行PCB缺陷检测的优势 1. **高效准确**:得益于先进的架构设计以及预训练权重的支持,即便是在较小规模的数据集上也可以快速收敛获得不错的泛化能力;同时由于采用了更优的空间金字塔池化层(SPP),使得特征提取更为鲁棒稳定。 2. **易于部署实施**:相较于其他大型复杂的目标检测模型而言,YOLOv8n本身具备极简主义的设计哲学——体积小巧却功能强大。这不仅有利于嵌入式系统集成也方便云平台大规模并行推理运算。 3. **灵活性强**:通过调整锚框尺寸(Anchor Boxes)可以很好地适配不同类型大小形状各异的缺陷样本分布情况;而且支持端到端训练机制无需额外标注工具辅助生成边界框信息。 4. **开源社区活跃**:围绕着整个YOLO家族构建起来的技术生态相当完善丰富。无论是官方提供的教程文档还是第三方开发者分享的经验技巧都极大地降低了入门门槛促进了技术交流与发展迭代进步空间广阔。 综上所述,利用YOLOv8n开展PCB表面组装工艺品质监控工作具有较高的可行性和实际价值。当然也要注意到一些潜在挑战比如光照变化影响图像质量导致误判率上升等问题需要针对性优化改进方案不断积累实战经验总结教训持续提升整体解决方案的专业度水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【网络星空】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值