2018-NIPS-Towards Sparse Hierarchical Graph Classifiers

2018-NIPS-Towards Sparse Hierarchical Graph Classifiers


Paper: https://arxiv.org/abs/1811.01287
Code:

对稀疏分类分级图

作者提出以往的图分类方法中通常使用单个全局池化步骤来聚合节点特征或手动设计的固定启发式算法,这样做会丢失信息,所以将readout层表示为 S = 1 N ∑ i = 0 N x i ∣ ∣ m a x x i S=\frac{1}{N}\sum^N_{i=0}x_i||maxx_i S=N1i=0Nxi∣∣maxxi, 池化层的方法沿用Graph U-Net提出的Topk算法,整个网络架构沿用JK-Net的思想,每一个层得出的信息都是有用的。

具体方式如下图所示

实验


表 1 说明了在所有情况下,该算法都明显优于 GraphSAGE 稀疏聚合方法 ,同时成功地与 DiffPool的三个变体在最多 1 个百分点的精度内竞争,这是分层图表示学习的最新发展。与后者不同,该方法不需要二次存储。

在图 2 中,证明该方法在更大规模的图形上优于 DiffPool,即使池化层不丢弃任何节点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

发呆的比目鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值