提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
提示:这里可以添加本文要记录的大概内容:
参考书《Nonlinear dynamics and chaos》 Steven H. Strogatz
本节重点Note第三章内容跨临界分岔(transcritical bifurcation)和激光(laser)例子,图片来自于该书
C3
C3.2跨临界分岔(Transcritical bifurcation)
标准型
不动点会随着参数变化而改变稳定性. 不动点稳定性改变的标准机理叫做跨临界分岔(transcritical bifurcation)
跨临界分岔的标准型为
x ˙ = r x − x ˙ \dot{x}=rx-\dot{x} x˙=rx−x˙
随着 r r r的变化,我们可以看到不动点的稳定性发生交换(exchange of stability).
(a)图中左边的不动点是不稳定的,右边的不动点是稳定的; (b)图中只有一个半稳定的不动点; ©图中左边的不动点是不稳定的,右边的不动点是稳定的;
跨临界分岔与鞍点分岔的区别在于它的不动点并不会消失.
不动点的方程为 x ∗ = 0 x^*=0 x∗=0以及 x ∗ = r x^*=r x∗=r
我们可以画出上述标准型的分岔图:
例子3.2.1
x ˙ = x ( 1 − x 2 ) − a ( 1 − e − b x ) \dot{x} = x(1-x^2) - a(1-e^{-bx}) x˙=x(1−x2)−a(1−e−bx)
我们可以先做泰勒展开得到如下:
1 − e − b x = 1 − [ 1 − b x + 1 2 b 2 x 2 + O ( x 3 ) ] = b x − 1 2 b 2 x 2 + O ( x 3 ) 1 - e^{-bx} = 1 - \left[1 - bx + \frac{1}{2}b^2x^2 + O(x^3)\right] \\ = bx - \frac{1}{2}b^2x^2 + O(x^3) 1−e−bx=1−[1−bx+2