多元高斯分布是非参_多元统计分析第01讲--多元正态分布及参数估计(随机向量,多元正态分布定义,条件分布和独立性)...

本篇介绍了多元正态分布及其参数估计,包括随机向量的联合分布、边缘分布和条件分布,以及正态随机向量的性质。讨论了独立性与不相关性的关系,以及如何判断随机向量是否独立。同时讲解了多元正态分布的4种定义,并通过特征函数、线性变换等特性来探讨其性质。
摘要由CSDN通过智能技术生成

第二章、多元正态分布及参数估计

这一讲主要是给出概率论中若干概念向高维的推广

2.1随机向量

一、随机向量的联合分布、边缘分布和条件分布

1、多元数据equation?tex=p 维随机向量:

equation?tex=%5Cboldsymbol%7BX%7D%3D%5Cleft%28X_%7B1%7D%2C+%5Ccdots%2C+X_%7Bp%7D%5Cright%29%5E%7B%5Cprime%7D ,其中每个

equation?tex=X_%7Bi%7D 都是随机变量

随机矩阵:

equation?tex=%5Cboldsymbol%7BX%7D_%7Bn+%5Ctimes+p%7D%3D%5Cleft%28%5Cboldsymbol%7BX%7D_%7B1%7D%2C+%5Cboldsymbol%7BX%7D_%7B2%7D%2C+%5Cldots%2C+%5Cboldsymbol%7BX%7D_%7Bn%7D%5Cright%29%5E%7B%5Cprime%7D ,其中每个

equation?tex=%5Cboldsymbol%7BX%7D_%7Bi%7D 都是

equation?tex=p 维随机变量,它代表了

equation?tex=p 维随机向量的

equation?tex=n 个样本,其中每一行都是一个样本。回顾一下数理统计中的简单样本

equation?tex=%5Cleft%28X_%7B1%7D%2C+%5Ccdots%2C+X_%7Bn%7D%5Cright%29 ,这里的高维样本不过是将每个

equation?tex=X_i 变成了一个

equation?tex=p 维的向量.

2、多元分布

1、分布函数

类似一维情形

equation?tex=F%28%5Cboldsymbol%7BX%7D+%5Cleq+%5Cboldsymbol%7Bx%7D%29%3DP%5Cleft%28X_%7B1%7D+%5Cleq+x_%7B1%7D%2C+%5Cldots%2C+X_%7Bp%7D+%5Cleq+x_%7Bp%7D%5Cright%29%5C%5C

2、密度函数

为多维实值函数满足

equation?tex=f%28%5Cboldsymbol%7Bx%7D%29

equation?tex=F%28%5Cboldsymbol%7Bx%7D%29%3D%5Cint_%7B-%5Cinfty%7D%5E%7Bx_%7B1%7D%7D+%5Cint_%7B-%5Cinfty%7D%5E%7Bx_%7B2%7D%7D+%5Cldots+%5Cint_%7B-%5Cinfty%7D%5E%7Bx_%7Bp%7D%7D+f%5Cleft%28x_%7B1%7D%2C+x_%7B2%7D%2C+%5Cldots%2C+x_%7Bp%7D%5Cright%29+d+x_%7B1%7D+d+x_%7B2%7D+%5Cldots+d+x_%7Bp%7D%5C%5C

3、边际分布

考虑变量之间的独立性时,往往会涉及到边际分布。对于一个

equation?tex=p 维随机向量,设其中一个

equation?tex=q 维子向量为

equation?tex=%5Cboldsymbol%7BX%7D_%7B1%7D%3D%5Cleft%28X_%7Bi_%7B1%7D%7D%2C+%5Cldots%2C+X_%7Bi_%7Bq%7D%7D%5Cright%29%5E%7B%5Cprime%7D ,那么该子向量的分布便是边际分布,计算方法如下

equation?tex=P%5Cleft%28%5Cboldsymbol%7BX%7D_%7B1%7D+%5Cleq+%5Cboldsymbol%7Bx%7D_%7B1%7D%5Cright%29%3DF%5Cleft%28%5Cinfty%2C+%5Cldots%2C+x_%7Bi_%7B1%7D%7D%2C+%5Cinfty%2C+%5Cldots%2C+x_%7Bi_%7Bq%7D%7D%2C+%5Cldots%2C+%5Cinfty%5Cright%29%5C%5C

也就是分布函数中不在

equation?tex=X_%7Bi_j%7D 中的变量取值为无穷大.

ps:如果是求边际密度,则为联合密度对不在不在

equation?tex=X_%7Bi_j%7D 中的变量求全积分.

4、条件分布

equation?tex=%5Cboldsymbol%7BX%7D%3D%5Cleft%28%5Cboldsymbol%7BX%7D_%7B1%7D%5E%7B%5Cprime%7D%2C+%5Cboldsymbol%7BX%7D_%7B2%7D%5E%7B%5Cprime%7D%5Cright%29%5E%7B%5Cprime%7D ,则在给定

equation?tex=%5Cboldsymbol%7BX%7D_%7B2%7D 的条件下,

equation?tex=%5Cboldsymbol%7BX%7D_%7B1%7D 的条件分布为

equation?tex=f%5Cleft%28%5Cboldsymbol%7Bx%7D_%7B1%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B2%7D%5Cright%29%3Df%5Cleft%28%5Cboldsymbol%7Bx%7D_%7B1%7D%2C+%5Cboldsymbol%7Bx%7D_%7B2%7D%5Cright%29+%2F+f_%7BX_%7B2%7D%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7B2%7D%5Cright%29%5C%5C

5、相互独立联合密度等于边际密度的乘积

equation?tex=%5Cleft%28%5Cboldsymbol%7BX%7D_%7B1%7D%5E%7B%5Cprime%7D%2C+%5Cboldsymbol%7BX%7D_%7B2%7D%5E%7B%5Cprime%7D%5Cright%29%5E%7B%5Cprime%7D 的联合密度与各自的边际密度满足

equation?tex=f%5Cleft%28%5Cboldsymbol%7Bx%7D_%7B1%7D%2C+%5Cboldsymbol%7Bx%7D_%7B2%7D%5Cright%29%3Df_%7Bx_%7B1%7D%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7B1%7D%5Cright%29+f_%7Bx_%7B2%7D%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7B2%7D%5Cright%29%5C%5C联合分布函数可分离

二、随机向量的数字特征

equation?tex=X%3D%5Cleft%28X_%7B1%7D%2C+%5Ccdots%2C+X_%7Bp%7D%5Cright%29%5E%7B%5Cprime%7D%2C+Y%3D%5Cleft%28Y_%7B1%7D%2C+%5Ccdots%2C+Y_%7Bq%7D%5Cright%29%5E%7B%5Cprime%7D 是两个随机向量

1、均值向量

equation?tex=E%28X%29%3D%5Cleft%5BE%5Cleft%28X_%7B1%7D%5Cright%29%2C+%5Ccdots%2C+E%5Cleft%28X_%7Bp%7D%5Cright%29%5Cright%5D%5E%7B%5Cprime%7D%3D%5Cleft%28%5Cmu_%7B1%7D%2C+%5Ccdots%2C+%5Cmu_%7Bp%7D%5Cright%29%5E%7B%5Cprime%7D%5C%5C

2、

equation?tex=X 的协方差阵

equation?tex=D%28X%29%3DE%5Cleft%5B%28X-E%28X%29%29%28X-E%28X%29%29%5E%7B%5Cprime%7D%5Cright%5D%3D%5Cleft%28%5Csigma_%7Bi+j%7D%5Cright%29_%7B%28p+%5Ctimes+p%29%7D+%5Cstackrel%7B%5Ctext+%7Bdef%7D%7D%7B%3D%7D+%5CSigma%5C%5C

3、

equation?tex=X

equation?tex=Y 的协方差阵

equation?tex=%5Coperatorname%7BCov%7D%28X%2C+Y%29%3DE%5Cleft%5B%28X-E%28X%29%29%28Y-E%28Y%29%29%5E%7B%5Cprime%7D%5Cright%5D%3D%5Cleft%28%5Csigma_%7Bi+j%7D%5Cright%29_%7B%28p+%5Ctimes+q%29%7D%5C%5C

如果

equation?tex=%5Coperatorname%7BCov%7D%28X%2C+Y%29%3D0 ,则称

equation?tex=X%2CY 不相关.

4、

equation?tex=X 的相关系数矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值