从5个经典工作开始看语义SLAM

本文概述了Semantic SLAM的主要思想,包括如何利用物体信息提升SLAM性能,以及Semantic Mapping和Real Semantic SLAM的发展方向。Semantic SLAM通过结合语义分割、目标检测等技术,不仅帮助构建高层次地图,还提高了定位精度。文章探讨了Recursive Bayes方法、Object-based Mapping、重投影误差优化等技术,并引用了多个研究工作作为示例。
摘要由CSDN通过智能技术生成

本文试图概括Semantic SLAM的主要思路和近年工作,⻓期更新。但因水平有限,若有错漏,感谢指正。(更好的公式显示效果,可关注文章底部的公众号)

Semantic SLAM

简介

至今为止,主流的 SLAM 方案 [[1]](http://webdiis.unizar.es/~rau… 基于处于像素层级的特征点,更具体地,它们往往只能用角点或边缘来提取路标。人类是通过物体在图像中的运动来推测相机的运动,而非特定像素点

Semantic SLAM 是研究者试图利用物体信息的方案,其在Deep Learning的推动下有了较大的发展,成为了相对独立的分支,就方法(非设备)而言,其在整个SLAM领域所处位置如下图:

目前而言,所谓 Semantic 是将基于神经网络的语义分割、目标检测、实例分割等技术用于 SLAM 中,多用于特征点选取、相机位姿估计,更广泛地说,端到端的图像到位姿、从分割结果建标记点云、场景识别、提特征、做回环检测等使用了神经网络的方法都可称为 Semantic SLAM [[2]](https://zhuanlan.zhihu.com/p/…

语义和 SLAM 的结合的体现有以下两点 [[3]](https://book.douban.com/subje…

  • SLAM 帮助语义。

    检测和分割任务都需要大量的训练数据,在 SLAM 中,由于我们可以估计相机的运动,那么各个物体在图像中位置的变化也可以被预测出来,产生大量的新数据为语义任务提供更多优化条件,且节省人工标定的成本。

  • 语义帮助 SLAM。

    一方面,语义分割把运动过程中的每一张图片都带上语义标签,随后传统 SLAM 将带标签的像素映射到3D空间中,就能得到一个带有标签的地图。这提供了高层次的地图,有利于机器人自主理解和人机交互

    另一方面,语义信息亦可为回环检测、Bundle Adjustment 带来更多的优化条件,提高定位精度

    仅实现前者的工作往往称为 Semantic Mapping,后者才认为是真正的 Semantic SLAM。

发展方向

分别从 Semantic Mapping 和 Real Semantic SLAM 两方面,介绍一些主要思路。

Semantic Mapping

这类工作要求特征点是 dense 或 semi-dense 的(否则 Mapping 无意义),因此往往用 RGB-D 的 SLAM 方案,亦或是单目相机的 semi-dense LSD-SLAM 方案 [[4]](https://vision.in.tum.de/rese…

有两种 Mapping 方式:

  • 将2D图像的语义分割结果,即带标签的像素,映射到3D点云中

    研究人员尝试让 SLAM 所得的信息(特别是相机位姿),能够提高语义分割的性能。其中一种是使用 SemanticFusion [[5]](

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值