中计算均方误差_评估指标-均方误差(MSE)、平均绝对误差(MAE)3D张量、2D张量、向量之间的区别(代码解释)...

本文探讨了在使用TensorFlow Keras时遇到的3D张量计算均方误差(MSE)导致的形状不匹配问题。通过代码示例,展示了3D张量、2D张量和向量计算MSE和MAE的结果,并强调了无论输入形状如何,最终结果需转换为标量。作者分享了错误处理方法,提醒读者注意确保MSE计算后的结果是一个标量。
摘要由CSDN通过智能技术生成

在建立模型的损失函数时,直接使用的tensorflow keras自带的MSE函数,传入的是3D张量,但是在训练的过程中,报错ValueError: operands could not be broadcast together with shapes

查了形状方面不匹配,但是我把模型结构图片展示出来,并没有发现形状上有什么不对。考虑到是fit函数训练时出错,新加的代码只有损失那边,由于我的数据是时间序列数据所以输入时3D张量(samples, time_step, features),模型的输出也是3D张量,直接调用loss = MSE(inputs, outputs), Mode.add_loss(loss),就直接报错了。

所以直接测试了关于MSE函数,分别使用3D张量、2D张量、向量来进行测试,看MSE输入的结果是什么形状。 首先看一下MSE与MAE的定义。

1. MSE(Mean Squared Error)均方误差

b5a7ab1f7222e38c1cc3c5abfea441d3.png

2. RMSE(Root Mean Squared Error)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值