在建立模型的损失函数时,直接使用的tensorflow keras自带的MSE函数,传入的是3D张量,但是在训练的过程中,报错ValueError: operands could not be broadcast together with shapes。
查了形状方面不匹配,但是我把模型结构图片展示出来,并没有发现形状上有什么不对。考虑到是fit函数训练时出错,新加的代码只有损失那边,由于我的数据是时间序列数据所以输入时3D张量(samples, time_step, features),模型的输出也是3D张量,直接调用loss = MSE(inputs, outputs), Mode.add_loss(loss),就直接报错了。
所以直接测试了关于MSE函数,分别使用3D张量、2D张量、向量来进行测试,看MSE输入的结果是什么形状。 首先看一下MSE与MAE的定义。