dict存到pandas_将dict的dict转换为pandas中的dataframe

本文介绍了如何使用dictionary comprehension和list comprehension结合pandas方法,将嵌套字典转换为DataFrame,并对比了不同方法的性能。通过排序提升效率,如`%timeit`结果显示,某些方法的运行速度显著优于其他方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将dictionary comprehension与^{}一起使用:df = pd.concat({k: pd.Series(v) for k, v in data.items()}).reset_index()

df.columns = list('xyz')

print (df)

x y z

0 1 a 10

1 1 b 30

2 2 a 20

3 2 b 60

要获得更好的性能,请将list compehension与sorting一起使用:

^{pr2}$

计时:In [34]: %timeit jez1(data)

16.8 ms ± 403 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [35]: %timeit jez(data)

1.96 s ± 90.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [37]: %timeit jp(data)

43 ms ± 353 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

与@jp相同的代码:data = {str(k): {'a': 10, 'b': 30} for k in range(10000)}

def jp(data):

return pd.melt(pd.DataFrame.from_dict(data, orient='index').reset_index().rename(columns={'index': 'x'}),

id_vars=['x'], value_vars=['a', 'b'], var_name='y', value_name='z')\

.sort_values(['x', 'y']).reset_index(drop=True)

def jez(data):

df = pd.concat({k: pd.Series(v) for k, v in data.items()}).reset_index()

df.columns = list('xyz')

return df

def jez1(data):

L = sorted([(k,k1,v1) for k,v in data.items() for k1,v1 in v.items()], key=lambda x: (x[0], x[1]))

df = pd.DataFrame(L, columns=list('xyz'))

return df

assert (jez1(data).values == jez(data).values).all()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值