结合泛函极值_泛函极值与变分法

本文介绍了变分法的基本概念,通过最速降线问题和弦振动方程等例子,阐述了泛函极值问题的求解,特别是依赖于一元函数的固定边界最简泛函极值问题。通过Euler方程,将整体的泛函极值转化为局部的微分方程问题,简化了求解过程。
摘要由CSDN通过智能技术生成

这篇文章是为了回答一位知友的提问而作的向未了解过变分法这个概念的读者介绍它的文章,因此本文只涉及一些变分法的入门知识。在从极值条件导出欧拉方程时只涉及泛函变分的Lagrange定义,这样一来就不必引入关于分离泛函线性主部的讨论。行文时并不过分追求数学的严密性并只假定读者具有基础的微积分尤其是复合函数求取偏导数的知识。

1.泛函与泛函极值

提起变分法这个名词就不得不先来谈谈泛函的概念,撇开数学上的定义不谈让我们先来看几个例子:

首先就是题主问到的最速降线问题,它是Galileo于1630年首先提出来的。如章首图所示在平面直角坐标系里给定点

,在区间

上有一条曲线

连结这两个点。现在让我们在

点放上一个小球,这样它就由于受到重力作用沿着曲线运动起来,运动到

点的时间很容易计算出来:

(如果读者觉得这不容易的话阅读这篇文章并不是个明智之举)。这里我们看到所用的时间

是依赖于函数

的具体形式的,现在的问题是如何选择

的形式能够使

取得最小值?

再来举一个吹肥皂泡的例子:想要玩吹泡泡这个游戏看来我们需要准备一些工具——一个由铁丝围起来的封闭形状。我们的生活经验会毫不犹豫地告诉我们肥皂液在铁丝上形成一个平面而不是凹凸不平的曲面(略去重力的影响)。在物理上这件事的解释是液体的膜具有一种叫做表面张力的性质,某种程度上读者可以把肥皂膜理解为橡皮膜,它有使自己绷紧达到表面积最小的趋势,显然平面比凹凸不平的面具有更小的面积。不过如果我们的铁丝圈本来不在一个平面上会怎么样呢?这样一来无论如何肥皂膜再不能是平面了。我们假设那个铁丝圈由

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值