首先看什么是学习(learning)?
一个成语就可概括:举一反三。此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题目,懂解题方法,因此考场上面对陌生问题也可以算出答案。机器学习的思路也类似:我们能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考的题目)
高中学习:上课练习-模拟考试-高考
这也正如我们在高中做题,答案(标签)是非常重要的,假设两个完全相同的人进入高中,一个正常学习,另一人做的所有题目都没有答案,那么想必第一个人高考会发挥更好,第二个人会发疯。
因此,learning家族的整体构造是这样的:
- 有监督学习(分类,回归)
- 半监督学习(分类,回归),transductive learning(分类,回归)
- 半监督聚类(有标签数据的标签不是确定的,类似于:肯定不是xxx,很可能是yyy)
- 无监督学习(聚类)
最近在做计算过程中,又多了些理解,随手写上
还是以高考为例
全监督学习
平时做的题目,有答案,而且参考答案全对;
半监督学习
平时做的题目,半部分有答案;
弱监督学习
平时做的题目,有答案,但答案不一定全对;
无监督学习
平时做的题目完全没有答案;
域适应
在平时做的题目中,总结训练,将经验迁移到高考中,做出答案。