裂缝检测专题(3)裂缝数据集dataset总结1-分类

本文介绍了两个用于混凝土裂缝检测的数据集,包括ConcreteCrackImagesforClassification和crack-detection,分别包含40000张和6077张图像,并引用了相关研究论文。这些数据集被用于训练和测试基于深度学习的裂缝检测模型,如深度宽度网络和卷积神经网络。此外,还提到了其他数据集如crackdataset-voc和SDNET2018,以及HistoricalBuildingCracks和multi_classifier_data,用于不同场景的裂缝检测。文章提供了数据集的引用和下载链接,探讨了深度学习在结构健康监测中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

裂缝检测技术-基于图像处理

用于裂缝分类

  1. Concrete Crack Images for Classification
    像素值:227x227
    数量:40000张(20000negative+20000postive)
    引用该数据集的论文:
    “Automatic crack distress classification from concrete surface images using a novel deep-width network architecture”
    在这里插入图片描述
    在这里插入图片描述

  2. crack-detection
    像素值:224x224
    数量:6077张( 4856 training pictures and 1213 test pictures)
    引用该数据集的论文:
    “Automated Bridge Crack Detection Using Convolutional Neural Networks”
    Paper link:https://www.mdpi.com/2076-3417/9/14/2867

[1]Xu H, Su X, Wang Y, et al. Automatic Bridge Crack Detection Using a Convolutional Neural Network[J]. Applied Sciences, 2019, 9(14): 2867.

[2]Li Liang-Fu, Ma Wei-Fei, Li Li, Lu Cheng. Research on detection algorithm for bridge cracks based on deep learning. Acta Automatica Sinica, 2018
在这里插入图片描述

  1. crackdataset-voc
    VoC格式数据集
    数量:3000左右

在这里插入图片描述

  1. ConcreteDataset
    SDNET2018
    在这里插入图片描述

  2. Historical Building Cracks
    在这里插入图片描述

  3. multi_classifier_data
    在这里插入图片描述

在这里插入图片描述
数据集下载链接请私信或留言

本文微原创博客,如转载请注明出处。

如有侵权请联系作者删除!

### 裂缝数据集概述 在机器学习领域,裂缝数据集对于训练模型以实现自动化检测和分析至关重要。以下是几个常见的裂缝数据集及其特点: #### 1. **Concrete Crack Images for Classification** 这是一个专门针对混凝土裂缝分类数据集[^1]。它由巴西圣保罗大学的研究人员创建,包含40,000张图像,分为两类: - 正常混凝土图像(20,000张)。 - 带有裂缝的混凝土图像(20,000张),进一步细分为边缘裂缝、孔洞裂缝和离散裂缝。 这些图像具有统一的尺寸和分辨率,适合用于二分类任务或更复杂的多类裂缝识别任务。 #### 2. **无人机航拍路面裂缝识别数据集** 此数据集适用于基于无人机拍摄的道路裂缝检测场景[^2]。其结构通常包括`train`和`val`两个子目录,分别存储训练集和验证集的图片。此外,还附带了一个`data.yaml`文件,定义了数据集路径、类别数量以及类别名称。具体类别如下: - Longitudinal crack (纵向裂缝) - Transverse crack (横向裂缝) - Alligator crack (龟裂) - Oblique crack (斜向裂缝) - Repair (修复区域) - Block crack (块状裂缝) - Pothole (坑洼) 这种多样化的标签体系使得该数据集非常适合复杂路况下的裂缝检测任务。 #### 3. **CrackForest-156-labelme 数据集** 这个数据集专注于道路裂缝检测,并提供了丰富的应用场景支持[^3]。除了基本的裂缝标注外,还可以与其他传感器数据结合,完成更加全面的路面状况评估。它的主要用途包括但不限于: - 自动化裂缝检测与定位; - 预测潜在损坏并规划维护计划; - 支持智能交通系统的优化运行。 --- ### 使用建议 当选择合适的裂缝数据集时,需考虑以下因素: - **目标应用**:如果关注的是建筑结构中的裂缝,则优先选用像Concrete Crack Images这样的专用数据集。如果是道路交通领域,则推荐使用CrackForest或其他类似的高精度标记数据集- **模型架构**:某些预处理好的数据集已经适配特定框架(如YOLOv5),可以直接加载配置文件进行快速实验。 - **质量控制**:确保所选数据集中每张图片都经过严格筛选,避免因噪声干扰而导致模型泛化能力下降。 下面是一段简单的Python脚本示例,展示如何读取此类数据集的部分内容: ```python import os from PIL import Image def load_images_from_folder(folder_path): images = [] for filename in os.listdir(folder_path): img_path = os.path.join(folder_path, filename) if os.path.isfile(img_path): try: img = Image.open(img_path).convert('RGB') images.append(img) except Exception as e: print(f"Error loading image {filename}: {e}") return images # Example usage with a dataset folder path dataset_train_dir = "../crack_detection_dataset/images/train/" loaded_images = load_images_from_folder(dataset_train_dir) print(f"{len(loaded_images)} training images loaded.") ``` --- ###
评论 345
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值