有限体积法(9)——高阶差分格式:QUICK格式

迎风格式和混合格式只有一阶计算精度,虽然迎风格式使用起来非常稳定并且满足输运性要求,但一阶精度容易导致数值扩散的误差,可以通过使用高阶离散格式来降低这些误差。高阶格式一般需要使用更多的节点值,通过考虑更大范围内的影响来降低误差。中心差分格式具有二阶精度,但它的稳定性很差,也不满足输运特性。考虑到向中心差分格式这种不能包含流动方向信息的格式是不稳定的,我们就需要寻找那些包含流动方向信息的高阶差分格式。下面就介绍这类差分格式:QUICK格式。

方程离散

QUICK(Quadratic upstream interpolation for convective kinetics)格式是由英国学者Leonard(1979)提出的用于计算控制体界面值的二次插值计算格式。QUICK格式利用控制体界面两侧的三个点进行插值,包括两个位于界面两侧的相邻节点和一个位于上游侧的远邻点,如下图。
在这里插入图片描述
u w > 0 , u e > 0 u_w>0,u_e>0 uw>0,ue>0时,通过节点WW,W和P的拟合曲线用于计算控制体左侧界面的参数 ϕ w \phi_w ϕw,而通过节点W、P和E的拟合曲线用于计算控制体右侧界面的参数 ϕ e \phi_e ϕe。当 u w < 0 , u e < 0 u_w<0,u_e<0 uw<0,ue<0时,则用节点W、P和E来计算左侧界面的 ϕ w \phi_w ϕw,而用节点P、E和EE来计算右侧界面的 ϕ e \phi_e ϕe。若用下标 i − 1 i-1 i1 i i i分别代表界面左、右两侧的相邻节点,用下标 i − 2 i-2 i2代表上游的远邻点,那么QUICK格式的公式为:
ϕ f a c e = 6 8 ϕ i − 1 + 3 8 ϕ i − 1 8 ϕ i − 2 (1) \phi_{face}=\frac{6}{8}\phi_{i-1}+\frac{3}{8}\phi_i-\frac{1}{8}\phi_{i-2} \tag{1} ϕface=86ϕi1+83ϕi81ϕi2(1)
u w > 0 u_w>0 uw>0时, w w w界面左右两侧相邻节点为W和P,上游远邻点为WW,如上图。该界面处参数插值的近似公式为
ϕ w = 6 8 ϕ W + 3 8 ϕ P − 1 8 ϕ W W (2) \phi_w=\frac{6}{8}\phi_W+\frac{3}{8}\phi_P-\frac{1}{8}\phi_{WW} \tag{2} ϕw=86ϕW+83ϕP81ϕWW(2)
u e > 0 u_e>0 ue>0时, e e e界面左右两侧相邻节点为P和E,上游远邻点为W,则该界面处参数插值的近似公式为
ϕ e = 6 8 ϕ P + 3 8 ϕ E − 1 8 ϕ W (3) \phi_e=\frac{6}{8}\phi_P+\frac{3}{8}\phi_E-\frac{1}{8}\phi_{W} \tag{3} ϕe=86ϕP+83ϕE81ϕW(3)
理论上,扩散项的梯度也可以使用二次拟合曲线的导数来近似,但是对于均匀网格的情况,过两点的抛物线在其中点处的导数和过这两个点的直线的斜率相等,所以这里扩散项依旧使用中心差分格式来离散。那么对于前面的一维对流扩散方程,如果 F w > 0 , F e > 0 F_w>0,F_e>0 Fw>0,Fe>0,我们使用上述的QUICK格式来离散对流项,用中心差分格式来离散扩散项,得到其离散方程
[ F e ( 6 8 ϕ P + 3 8 ϕ E − 1 8 ϕ W ) − F w ( 6 8 ϕ W + 3 8 ϕ P − 1 8 ϕ W W ) ] = D e ( ϕ E − ϕ P ) − D w ( ϕ P − ϕ W ) (4) \begin{aligned} \left[ F_e\left(\frac{6}{8}\phi_P+\frac{3}{8}\phi_E-\frac{1}{8}\phi_{W} \right) -F_w\left(\frac{6}{8}\phi_W+\frac{3}{8}\phi_P-\frac{1}{8}\phi_{WW} \right) \right]\\\\ =D_e(\phi_E-\phi_P) -D_w(\phi_P-\phi_W) \end{aligned} \tag{4} [Fe(86ϕP+83ϕE81ϕW)Fw(86ϕW+83ϕP81ϕWW)]=De(ϕEϕP)Dw(ϕPϕW)(4)
整理之,
[ D w − 3 8 F w + D e + 6 8 F e ] ϕ P = [ D w + 6 8 F w + 1 8 F e ] ϕ W + [ D e − 3 8 F e ] ϕ E − 1 8 F w ϕ W W (5) \begin{aligned} \left[ D_w-\frac{3}{8}F_w +D_e+\frac{6}{8}F_e \right]\phi_P=\left[ D_w+\frac{6}{8}F_w+\frac{1}{8}F_e \right]\phi_W \\\\+ \left[ D_e-\frac{3}{8}F_e \right] \phi_E - \frac{1}{8}F_w\phi_{WW} \end{aligned} \tag{5} [Dw83Fw+De+86Fe]ϕP=[Dw+86Fw+81Fe]ϕW+[De83Fe]ϕE81FwϕWW(5)
写出标准形式,
a P ϕ P = a W ϕ W + a E ϕ E + a W W ϕ W W (6) a_P\phi_P = a_W\phi_W +a_E\phi_E+a_{WW}\phi_{WW} \tag{6} aPϕP=aWϕW+aEϕE+aWWϕWW(6)
系数:
a W = D w + 6 8 F w + 1 8 F e a E = D e − 3 8 F e a W W = −

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值