写一个完整的复杂的准确度高的POI语义分类的代码

这段代码展示了如何利用Python的Scikit-learn库进行文本处理,具体是读取CSV数据,应用TF-IDF转换(设置最小文档频率为2,最大文档频率为0.5,n-gram范围为1到2),然后用支持向量机(SVC)进行语义分类。
摘要由CSDN通过智能技术生成

下面是一个POI语义分类的代码:# 导入必要的库 import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC# 读取数据 data = pd.read_csv('data.csv')# 建立TF-IDF向量 vectorizer = TfidfVectorizer(min_df=2, max_df=0.5, ngram_range=(1,2)) tfidf = vectorizer.fit_trans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值