下面是一个POI语义分类的代码:# 导入必要的库 import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC# 读取数据 data = pd.read_csv('data.csv')# 建立TF-IDF向量 vectorizer = TfidfVectorizer(min_df=2, max_df=0.5, ngram_range=(1,2)) tfidf = vectorizer.fit_trans
写一个完整的复杂的准确度高的POI语义分类的代码
最新推荐文章于 2024-11-01 16:46:11 发布
这段代码展示了如何利用Python的Scikit-learn库进行文本处理,具体是读取CSV数据,应用TF-IDF转换(设置最小文档频率为2,最大文档频率为0.5,n-gram范围为1到2),然后用支持向量机(SVC)进行语义分类。
摘要由CSDN通过智能技术生成