图像分类是一个认为几乎解决了的问题。
有趣的是,你必须竭尽所能来提升额外的1%的准确率。当我参加“ Intel Scene Classification Challenge hosted by Analytics Vidhya(由Analytics Vidhya主办的英特尔场景分类挑战)”我非常喜欢这次比赛,因为我尝试从我的深度学习模型中榨干所有的潜力。下面的技术通常是可以应用到手头上的任何图像分类问题中去。
问题
下面的问题是把给定的图片分类到下面的6个类别中去。
数据类别
数据中包含25,000张自然风景的图片,这些图片来自世界各地。
渐进的(图片)尺寸调整
当训练CNN模型的时候,从小到大的线性调整图片尺寸是一项技术。渐进的尺寸调整在很赞的fastai课程中被描述为:程序员的深度学习实践。一种不错的方式是先用小的尺寸,如64 x 64进行训练,再用这个模型的参数,在128 x 128尺寸上进行训练,如此以往。每个较大的模型都在其体系结构中包含以前较小的模型层和权重。
渐进的尺寸调整

本文探讨了如何优化图像分类模型的性能,包括使用渐进的尺寸调整、FastAI库、完整权重初始化、混合增强、学习率调优、通用对抗网络、去除混淆图像等方法。通过这些技术,可以在现有模型基础上提升准确率。
最低0.47元/天 解锁文章
230

被折叠的 条评论
为什么被折叠?



