目前ResNet(残差网络)有两大主流创新思路:一是与其他技术或模型结合,比如前文讲到的ResNet+Transformer;二是在原始设计的基础上进行改进。
尽管ResNet通过残差学习有效改善了深层网络的训练和性能,但同时它也面临着计算资源消耗大、过拟合风险、网络冗余和梯度相关性等挑战。
为克服这些挑战,研究者们基于原始的ResNet架构设计了多种变体,比如性能反超Transformer的ConvNeXt、准确率高达98.42%的FC-ResNet等。这些改进方案解决了深层网络训练中的梯度消失问题,并简化了学习过程,在提高模型精度和训练效率方面表现出色。
因此,针对ResNet变体的研究一直是深度学习领域的热门方向。为帮助同学们深入了解,这次我整理了19个ResNet改进方案,有2024最新的,也有经典必看的,模型原文以及开源代码已附,方便同学们复现。
论文原文以及开源代码需要的同学看文末