ResNet最新变体!性能反超Transformer,模型准确率达98.42%

文章探讨了ResNet在深度学习中的重要地位,介绍了几种关键的改进变体如FC-ResNet、TB-ResNet和D-ResNet,它们通过结合其他技术、优化模型结构和利用频域信息等方式,提升了模型的性能、准确性和效率。作者还提供了多个相关论文和开源代码资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前ResNet(残差网络)有两大主流创新思路:一是与其他技术或模型结合,比如前文讲到的ResNet+Transformer;二是在原始设计的基础上进行改进。

尽管ResNet通过残差学习有效改善了深层网络的训练和性能,但同时它也面临着计算资源消耗大、过拟合风险、网络冗余和梯度相关性等挑战。

为克服这些挑战,研究者们基于原始的ResNet架构设计了多种变体,比如性能反超Transformer的ConvNeXt、准确率高达98.42%的FC-ResNet等。这些改进方案解决了深层网络训练中的梯度消失问题,并简化了学习过程,在提高模型精度和训练效率方面表现出色。

因此,针对ResNet变体的研究一直是深度学习领域的热门方向。为帮助同学们深入了解,这次我整理了19个ResNet改进方案,有2024最新的,也有经典必看的,模型原文以及开源代码已附,方便同学们复现。

论文原文以及开源代码需要的同学看文末

FC-ResNet

FC-ResNet: A Multilingual Handwritten Signature Verification Model Using an Improved ResNet with CBAM

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值